Technical Papers
Feb 2, 2022

Morphology Characteristics of the Fragments Produced by Rock Grain Crushing

Publication: International Journal of Geomechanics
Volume 22, Issue 4

Abstract

The morphology of fragments produced by grain fragmentation is a cause for great concern in many areas such as rockfill dam and the mining industry. Therefore, there is a need to conduct a quantitative analysis of the morphology characteristics of fragments produced by rock grain crushing. So far, few studies have focused on the qualitative analysis of fragment morphology, and quantitative studies are rare. This study presents a quantitative investigation of the morphology characteristics of fragments produced by the crushing of two groups of rounded and angular rock grains. The intact grain morphology is acquired using a 3D scanner, and the grain fracture and fragmentation are simulated using the combined finite-discrete element method (FDEM). The mesh refinement study indicates that a finite-element mesh size that leads to the fracture process zone to be discretized into at least five or six elements is used to eliminate or minimize the mesh size effect. Regular and spherical grains tend to get smaller largest fragments and larger second-largest fragments compared with grains with lower sphericity and convexity because of different fracture modes. Small differences have been observed in the distributions of fragment shape descriptors for grains in two groups. However, no monotonic relationship has been found between the distribution of shape descriptors and the fragment size, except sphericity. The distributions of sphericity for different size groups clearly suggest that larger-sized fragments tend to be more angular, which is consistent with the existing results.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge financial support by the National Key R&D Program of China (Grant No. 2018YFC1508503), Guizhou Province Science and Technology Support Project (2019) (Grant No. 2869), and the National Natural Science Foundation of China (Grant Nos. 51825905, U1865204, and 52179141). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

References

Al-Raoush, R. 2007. “Microstructure characterization of granular materials.” Physica A 377 (2): 545–558. https://doi.org/10.1016/j.physa.2006.11.090.
Alshibli, K. A., A. M. Druckrey, R. I. Al-Raoush, T. Weiskittel, and N. V. Lavrik. 2015. “Quantifying morphology of sands using 3D imaging.” J. Mater. Civ. Eng. 27 (10): 04014275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001246.
Altuhafi, F., and M. R. Coop. 2011. “Changes to particle characteristics associated with the compression of sands.” Géotechnique 61 (6): 459–471. https://doi.org/10.1680/geot.9.P.114.
Åström, J. 2006. “Statistical models of brittle fragmentation.” Adv. Phys. 55 (3-4): 247–278. https://doi.org/10.1080/00018730600731907.
Åström, J. A., F. Ouchterlony, R. Linna, and J. Timonen. 2004. “Universal dynamic fragmentation in D dimensions.” Phys. Rev. Lett. 92 (24): 245506. https://doi.org/10.1103/PhysRevLett.92.245506.
Cantor, D., E. Azéma, P. Sornay, and F. Radjai. 2017. “Three-dimensional bonded-cell model for grain fragmentation.” Comput. Part. Mech. 4 (4): 441–450. https://doi.org/10.1007/s40571-016-0129-0.
Cavarretta, I., M. Coop, and C. O’Sullivan. 2010. “The influence of particle characteristics on the behaviour of coarse grained soils.” Géotechnique 60 (6): 413–423. https://doi.org/10.1680/geot.2010.60.6.413.
Chen, X., G. Ma, W. Zhou, G.-W. Lai, and Z.-Q. Lai. 2018. “Effects of material disorder on impact fragmentation of brittle spheres.” Acta Phys. Sin. 67 (14): 146102–146102.
Cheshomi, A., and E. A. Sheshde. 2013. “Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test.” J. Pet. Sci. Eng. 111: 121–126. https://doi.org/10.1016/j.petrol.2013.10.015.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Cil, M., and K. A. Alshibli. 2012. “3D assessment of fracture of sand particles using discrete element method.” Géotechnique Lett. 2 (3): 161–166. https://doi.org/10.1680/geolett.12.00024.
Cil, M., and K. A. Alshibli. 2014. “3D evolution of sand fracture under 1D compression.” Géotechnique 64 (5): 351–364. https://doi.org/10.1680/geot.13.P.119.
Cil, M. B., and K. A. Alshibli. 2015. “Modeling the influence of particle morphology on the fracture behavior of silica sand using a 3D discrete element method.” C.R. Méc. 343 (2): 133–142. https://doi.org/10.1016/j.crme.2014.11.004.
Corder, G. W., and D. I. Foreman. 2009. Nonparametric statistics for non-statisticians: A step-by-step approach. Hoboken, NJ: Wiley.
Cui, P., Y.-y. Zhu, Y.-s. Han, X.-q. Chen, and J.-q. Zhuang. 2009. “The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation.” Landslides 6 (3): 209–223. https://doi.org/10.1007/s10346-009-0160-9.
Domokos, G., F. Kun, A. A. Sipos, and T. Szabó. 2015. “Universality of fragment shapes.” Sci. Rep. 5: 9147. https://doi.org/10.1038/srep09147.
Eberhardt, E., D. Stead, and J. S. Coggan. 2004. “Numerical analysis of initiation and progressive failure in natural rock slopes—The 1991 Randa rockslide.” Int. J. Rock Mech. Min. Sci. 41 (1): 69–87. https://doi.org/10.1016/S1365-1609(03)00076-5.
Elmo, D., D. Stead, E. Eberhardt, and A. Vyazmensky. 2013. “Applications of finite/discrete element modeling to rock engineering problems.” Int. J. Geomech. 13 (5): 565–580. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000238.
Fonseca, J., C. O’Sullivan, M. R. Coop, and P. D. Lee. 2012. “Non-invasive characterization of particle morphology of natural sands.” Soils Found. 52 (4): 712–722. https://doi.org/10.1016/j.sandf.2012.07.011.
Gao, K., B. J. Euser, E. Rougier, R. A. Guyer, Z. Lei, E. E. Knight, J. Carmeliet, and P. A. Johnson. 2018. “Modeling of stick-slip behavior in sheared granular fault gouge using the combined finite-discrete element method.” J. Geophys. Res. Solid Earth 123 (7): 5774–5792. https://doi.org/10.1029/2018JB015668.
Giacomini, A., O. Buzzi, B. Renard, and G. P. Giani. 2009. “Experimental studies on fragmentation of rock falls on impact with rock surfaces.” Int. J. Rock Mech. Min. Sci. 46 (4): 708–715. https://doi.org/10.1016/j.ijrmms.2008.09.007.
Guo, L., J.-P. Latham, and J. Xiang. 2015. “Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite–discrete element method.” Comput. Struct. 146: 117–142. https://doi.org/10.1016/j.compstruc.2014.09.001.
Guo, L., J. Xiang, J.-P. Latham, and B. Izzuddin. 2016. “A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite–discrete element method.” Eng. Fract. Mech. 151: 70–91. https://doi.org/10.1016/j.engfracmech.2015.11.006.
Hanley, K. J., C. O’Sullivan, J. C. Oliveira, K. Cronin, and E. P. Byrne. 2011. “Application of Taguchi methods to DEM calibration of bonded agglomerates.” Powder Technol. 210 (3): 230–240. https://doi.org/10.1016/j.powtec.2011.03.023.
Hiramatsu, Y., and Y. Oka. 1966. “Determination of the tensile strength of rock by a compression test of an irregular test piece.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3 (2): 89–90. https://doi.org/10.1016/0148-9062(66)90002-7.
Huang, J., S. Xu, H. Yi, and S. Hu. 2014. “Size effect on the compression breakage strengths of glass particles.” Powder Technol. 268: 86–94. https://doi.org/10.1016/j.powtec.2014.08.037.
Huang, Q., W. Zhou, G. Ma, T.-T. Ng, and K. Xu. 2020. “Experimental and numerical investigation of Weibullian behavior of grain crushing strength.” Geosci. Front. 11 (2): 401–411. https://doi.org/10.1016/j.gsf.2019.07.007.
Kekäläinen, P., J. Åström, and J. Timonen. 2007. “Solution for the fragment-size distribution in a crack-branching model of fragmentation.” Phys. Rev. E 76 (2): 026112. https://doi.org/10.1103/PhysRevE.76.026112.
Kozicki, J., J. Tejchman, and Z. Mróz. 2012. “Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM.” Granular Matter 14 (4): 457–468. https://doi.org/10.1007/s10035-012-0352-1.
Kruskal, W. H., and W. A. Wallis. 1952. “Use of ranks in one-criterion variance analysis.” J. Am. Stat. Assoc. 47 (260): 583–621. https://doi.org/10.1080/01621459.1952.10483441.
Latham, J.-P., A. Munjiza, X. Garcia, J. Xiang, and R. Guises. 2008. “Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation.” Miner. Eng. 21 (11): 797–805. https://doi.org/10.1016/j.mineng.2008.05.015.
Le, T. D. Q., C. Alvarado, C. Girousse, D. Legland, and A.-L. Chateigner-Boutin. 2019. “Use of X-ray micro computed tomography imaging to analyze the morphology of wheat grain through its development.” Plant Methods 15 (1): 84. https://doi.org/10.1186/s13007-019-0468-y.
Le Pen, L. M., W. Powrie, A. Zervos, S. Ahmed, and S. Aingaran. 2013. “Dependence of shape on particle size for a crushed rock railway ballast.” Granular Matter 15 (6): 849–861. https://doi.org/10.1007/s10035-013-0437-5.
Liu, P., M. Meng, Y. Xiao, H. Liu, and G. Yang. 2021. “Dynamic properties of polyurethane foam adhesive-reinforced gravels.” Sci. China Technol. Sci. 64 (3): 535–547. https://doi.org/10.1007/s11431-020-1707-5.
Ma, G., Y. Chen, F. Yao, W. Zhou, and Q. Wang. 2019. “Evolution of particle size and shape towards a steady state: Insights from FDEM simulations of crushable granular materials.” Comput. Geotech. 112: 147–158. https://doi.org/10.1016/j.compgeo.2019.04.022.
Ma, G., W. Zhou, and X.-L. Chang. 2014a. “Modeling the particle breakage of rockfill materials with the cohesive crack model.” Comput. Geotech. 61: 132–143. https://doi.org/10.1016/j.compgeo.2014.05.006.
Ma, G., W. Zhou, X. L. Chang, and M. X. Chen. 2016. “A hybrid approach for modeling of breakable granular materials using combined finite–discrete element method.” Granular Matter 18 (1): 7. https://doi.org/10.1007/s10035-015-0597-6.
Ma, G., W. Zhou, X.-L. Chang, and W. Yuan. 2014b. “Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles.” Int. J. Geomech. 14 (4): 04014014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000372.
Ma, G., W. Zhou, T.-T. Ng, Y.-G. Cheng, and X.-L. Chang. 2015. “Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model.” Acta Geotech. 10 (4): 481–496. https://doi.org/10.1007/s11440-015-0367-y.
Ma, G., W. Zhou, R. A. Regueiro, Q. Wang, and X. Chang. 2017. “Modeling the fragmentation of rock grains using computed tomography and combined FDEM.” Powder Technol. 308: 388–397. https://doi.org/10.1016/j.powtec.2016.11.046.
Ma, G., W. Zhou, Y. Zhang, Q. Wang, and X. Chang. 2018. “Fractal behavior and shape characteristics of fragments produced by the impact of quasi-brittle spheres.” Powder Technol. 325: 498–509. https://doi.org/10.1016/j.powtec.2017.11.030.
Mahabadi, O. K., A. Lisjak, A. Munjiza, and G. Grasselli. 2012. “Y-Geo: New combined finite–discrete element numerical code for geomechanical applications.” Int. J. Geomech. 12 (6): 676–688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216.
Marshall, A. W., and I. Olkin. 1967. “A multivariate exponential distribution.” J. Am. Stat. Assoc. 62 (317): 30–44. https://doi.org/10.1080/01621459.1967.10482885.
McDowell, G. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G., and A. Amon. 2000. “The application of Weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
Morris, J. P., M. Rubin, G. Block, and M. P. Bonner. 2006. “Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis.” Int. J. Impact Eng. 33 (1–12): 463–473. https://doi.org/10.1016/j.ijimpeng.2006.09.006.
Munjiza, A., and N. W. M. John. 2002. “Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms.” Eng. Fract. Mech. 69 (2): 281–295. https://doi.org/10.1016/S0013-7944(01)00090-X.
Munjiza, A., D. Owen, and N. Bicanic. 1995. “A combined finite-discrete element method in transient dynamics of fracturing solids.” Eng. Comput. 12 (2): 145–174. https://doi.org/10.1108/02644409510799532.
Munjiza, A., J. Xiang, X. Garcia, J. P. Latham, G. G. S. D’Albano, and N. W. M. John. 2010. “The virtual geoscience workbench, VGW: Open source tools for discontinuous systems.” Particuology 8 (2): 100–105. https://doi.org/10.1016/j.partic.2009.04.008.
Ng, T.-T., W. Zhou, G. Ma, and X.-L. Chang. 2018. “Macroscopic and microscopic behaviors of binary mixtures of different particle shapes and particle sizes.” Int. J. Solids Struct. 135: 74–84. https://doi.org/10.1016/j.ijsolstr.2017.11.011.
Nguyen, D.-H., E. Azéma, P. Sornay, and F. Radjai. 2015. “Bonded-cell model for particle fracture.” Phys. Rev. E 91 (2): 022203. https://doi.org/10.1103/PhysRevE.91.022203.
Ouhbi, N., C. Voivret, G. Perrin, and J.-N. Roux. 2017. “3d particle shape modelling and optimization through proper orthogonal decomposition.” Granular Matter 19 (4): 86. https://doi.org/10.1007/s10035-017-0771-0.
Paixão, A., R. Resende, and E. Fortunato. 2018. “Photogrammetry for digital reconstruction of railway ballast particles–A cost-efficient method.” Constr. Build. Mater. 191: 963–976. https://doi.org/10.1016/j.conbuildmat.2018.10.048.
Paluszny, A., X. Tang, M. Nejati, and R. W. Zimmerman. 2016. “A direct fragmentation method with Weibull function distribution of sizes based on finite-and discrete element simulations.” Int. J. Solids Struct. 80: 38–51. https://doi.org/10.1016/j.ijsolstr.2015.10.019.
Pedregosa, F., et al. 2011. “Scikit-learn: Machine learning in Python.” J. Mach. Learn. Res. 12: 2825–2830.
Phillion, A., P. Lee, E. Maire, and S. L. Cockcroft. 2008. “Quantitative assessment of deformation-induced damage in a semisolid aluminum alloy via X-ray microtomography.” Metall. Mater. Trans. A 39 (10): 2459–2469. https://doi.org/10.1007/s11661-008-9584-4.
Ribas, L., G. C. Cordeiro, R. D. Toledo Filho, and L. M. Tavares. 2014. “Measuring the strength of irregularly-shaped fine particles in a microcompression tester.” Miner. Eng. 65: 149–155. https://doi.org/10.1016/j.mineng.2014.05.021.
Russell, A., P. Müller, and J. Tomas. 2014. “Quasi-static diametrical compression of characteristic elastic–plastic granules: Energetic aspects at contact.” Chem. Eng. Sci. 114: 70–84. https://doi.org/10.1016/j.ces.2014.04.016.
Russell, A., J. Schmelzer, P. Müller, M. Krüger, and J. Tomas. 2015. “Mechanical properties and failure probability of compact agglomerates.” Powder Technol. 286: 546–556. https://doi.org/10.1016/j.powtec.2015.08.045.
Suh, H. S., K. Y. Kim, J. Lee, and T. S. Yun. 2017. “Quantification of bulk form and angularity of particle with correlation of shear strength and packing density in sands.” Eng. Geol. 220: 256–265. https://doi.org/10.1016/j.enggeo.2017.02.015.
Sun, Y., B. Indraratna, and S. Nimbalkar. 2014. “Three-dimensional characterisation of particle size and shape for ballast.” Géotech. Lett. 4 (3): 197–202. https://doi.org/10.1680/geolett.14.00036.
Sun, Z., et al. 2021. “Effect of particle shape on size effect of crushing strength of rockfill particles.” Rock Soil Mech. 42 (2): 1–10.
Tatone, B. S., and G. Grasselli. 2015. “A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations.” Int. J. Rock Mech. Min. Sci. 75: 56–72. https://doi.org/10.1016/j.ijrmms.2015.01.011.
Wang, B., U. Martin, and S. Rapp. 2017. “Discrete element modeling of the single-particle crushing test for ballast stones.” Comput. Geotech. 88: 61–73. https://doi.org/10.1016/j.compgeo.2017.03.007.
Wang, L., J.-Y. Park, and Y. Fu. 2007. “Representation of real particles for DEM simulation using X-ray tomography.” Constr. Build. Mater. 21 (2): 338–346. https://doi.org/10.1016/j.conbuildmat.2005.08.013.
Wang, W., and M. R. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Wang, X.-b., W.-j. Xu, and B.-y. Zhang. 2014. “Breakage characteristics and crushing mechanism of cement materials using point-loading tests and the discrete-element method.” J. Mater. Civ. Eng. 26 (5): 992–1002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000873.
Wang, Y., G. Ma, J. Mei, Y. Zou, D. Zhang, and X. Cao. 2021. “Machine learning reveals the influences of grain morphology on grain crushing strength.” Acta Geotech. 16 (2): 1–14.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., G. Ma, B. Nan, and J. S. McCartney. 2020b. “Thermal conductivity of granular soil mixtures with contrasting particle shapes.” J. Geotech. Geoenviron. Eng. 146 (5): 06020004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002243.
Xiao, Y., B. Nan, and J. S. McCartney. 2019a. “Thermal conductivity of sand–tire shred mixtures.” J. Geotech. Geoenviron. Eng. 145 (11): 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019b. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Yan, C., H. Zheng, G. Sun, and X. Ge. 2016. “Combined finite–discrete element method for simulation of hydraulic fracturing.” Rock Mech. Rock Eng. 49 (4): 1389–1410. https://doi.org/10.1007/s00603-015-0816-9.
Yan, Y., J. Zhao, and S. Ji. 2015. “Discrete element analysis of breakage of irregularly shaped railway ballast.” Geomech. Geoeng. 10 (1): 1–9. https://doi.org/10.1080/17486025.2014.933891.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Zhao, B., J. Wang, M. Coop, G. Viggiani, and M. Jiang. 2015. “An investigation of single sand particle fracture using X-ray micro-tomography.” Géotechnique 65 (8): 625–641. https://doi.org/10.1680/geot.4.P.157.
Zhao, S., N. Zhang, X. Zhou, and L. Zhang. 2017. “Particle shape effects on fabric of granular random packing.” Powder Technol. 310: 175–186. https://doi.org/10.1016/j.powtec.2016.12.094.
Zheng, W., X. Hu, and D. D. Tannant. 2020. “Shape characterization of fragmented sand grains via X-ray computed tomography imaging.” Int. J. Geomech. 20 (3): 04020003.
Zhou, B., J. Wang, and H. Wang. 2018. “A novel particle tracking method for granular sands based on spherical harmonic rotational invariants.” Géotechnique 68 (12): 1116–1123. https://doi.org/10.1680/jgeot.17.T.040.
Zhou, B., J. Wang, and B. Zhao. 2015. “Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics.” Eng. Geol. 184: 126–137. https://doi.org/10.1016/j.enggeo.2014.11.009.
Zhou, B., D. Wei, Q. Ku, J. Wang, and A. Zhang. 2020a. “Study on the effect of particle morphology on single particle breakage using a combined finite–discrete element method.” Comput. Geotech. 122: 103532. https://doi.org/10.1016/j.compgeo.2020.103532.
Zhou, H. B., and J. T. Gao. 2014. “Automatic method for determining cluster number based on silhouette coefficient.” Adv. Mater. Res. 951: 227–230.
Zhou, W., S. L. Li, G. Ma, X. L. Chang, X. Ma, and C. Zhang. 2016. “Parameters inversion of high central core rockfill dams based on a novel genetic algorithm.” Sci. China Technol. Sci. 59 (5): 783–794. https://doi.org/10.1007/s11431-016-6017-2.
Zhou, W., G. Ma, X. Chang, and C. Zhou. 2013. “Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM.” J. Eng. Mech. 139 (12): 1868–1873. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000604.
Zhou, W., D. Wang, G. Ma, X. Cao, C. Hu, and W. Wu. 2020b. “Discrete element modeling of particle breakage considering different fragment replacement modes.” Powder Technol. 360: 312–323. https://doi.org/10.1016/j.powtec.2019.10.002.
Zhou, W., K. Xu, G. Ma, and X. Chang. 2019. “On the breakage function for constructing the fragment replacement modes.” Particuology 44: 207–217. https://doi.org/10.1016/j.partic.2018.08.006.
Zingg, T. 1935. Beitrag zur schotteranalyse. Zurich, Switzerland: ETH Zurich.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 4April 2022

History

Received: Aug 24, 2021
Accepted: Nov 28, 2021
Published online: Feb 2, 2022
Published in print: Apr 1, 2022
Discussion open until: Jul 2, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan Univ., Wuhan 430072, China (corresponding author). ORCID: https://orcid.org/0000-0002-1865-5721. Email: [email protected]
Master’s Graduate Student, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Professorate Senior Engineer, Powerchina Xibei Engineering Corporation Limited, Xian 710065, China. Email: [email protected]
Professorate Senior Engineer, Powerchina Xibei Engineering Corporation Limited, Xian 710065, China. Email: [email protected]
Professor, State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan Univ., Wuhan 430072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Experimental study on lightweight expanded clay at particle level: Breakage of isolated grains, Journal of Rock Mechanics and Geotechnical Engineering, 10.1016/j.jrmge.2022.12.022, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share