Technical Papers
Dec 27, 2021

Long-Term Elastoviscoplastic Behavior of Fly Ash–Blended Indian Montmorillonite Clay in Oedometer Conditions

Publication: International Journal of Geomechanics
Volume 22, Issue 3

Abstract

The time-dependent behavior of soft and problematic soils is a major concern as constructional fill geomaterial. Several researchers have been utilizing different admixture to stabilize soft soil. In this study, fly ash (FA) has been used as an admixture to investigate the time-dependent behavior of Indian montmorillonitic clay (BC) by considering its elastic-viscoplastic behavior. A series of oedometer tests have been carried out on the test specimens at different FA contents. Microstructural arrangement of the BC–FA matrix was investigated using scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The results indicate that the addition of FA increases the compression stiffness of the matrix and that the unloading–reloading index decrease continuously. Time-dependent parameters, that is, creep coefficient, swelling coefficient, and strain limit, are significantly reduced by the addition of FA. Results show that hydrated FA contents, which encounters BC soil, produce calcium silicate hydrate (C-S-H) gel due to pozzolanic reaction and form a dense BC–FA matrix. Microscopic study exhibits the contribution of specific minerals toward its elastic, plastic, and viscous behaviors. The results show that the constitutive elastic-viscoplastic model considering swelling (EVPS model) works well in predicting the long-term compressibility behavior of FA-blended soft soils.

Get full access to this article

View all available purchase options and get full access to this article.

References

Alzaidy, M. N. J. 2019. “Stabilization of soils using chemical admixtures: A review.” J. Univ. Babylon Eng. Sci. 27 (1): 51–62. https://doi.org/10.29196/jubes.v27i1.1970.
ASTM. 2014. Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 Ft-lbf/ft3 (600 KN-m/m3)). ASTM D698-12. West Conshohocken, PA: ASTM. https://doi.org/10.1520/D0698-12.
Bachus, R. C., et al. 2019. “Characterization and engineering properties of dry and ponded class-F fly ash.” J. Geotech. Geoenviron. Eng. 145 (3): 04019003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001986.
Binal, A. 2016. “The effects of high alkaline fly ash on strength behaviour of a cohesive soil.” Adv. Mater. Sci. Eng. 2016: 3048716. https://doi.org/10.1155/2016/3048716.
Bin-Shafique, S., K. Rahman, M. Yaykiran, and I. Azfar. 2010. “The long-term performance of two fly ash stabilized fine-grained soil subbases.” Resour. Conserv. Recycl. 54 (10): 666–672. https://doi.org/10.1016/j.resconrec.2009.11.007.
Chen, W. B., W. Q. Feng, J. H. Yin, J. M. Chen, L. Borana, and R. P. Chen. 2020a. “New model for predicting permanent strain of granular materials in embankment subjected to low cyclic loadings.” J. Geotech. Geoenviron. Eng. 146 (9): 04020084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002334.
Chen, W. B., W. Q. Feng, J. H. Yin, and L. Borana. 2020b. “LVDTs-based radial strain measurement system for static and cyclic behavior of geomaterials.” Measurement 155: 107526. https://doi.org/10.1016/j.measurement.2020.107526.
Choi, Y., G. Naidu, S. Jeong, S. Vigneswaran, S. Lee, R. Wang, and A. G. Fane. 2017. “Experimental comparison of submerged membrane distillation configurations for concentrated brine treatment.” Desalination 420: 54–62. https://doi.org/10.1016/j.desal.2017.06.024.
Chou, L. 1987. “Lime stabilization: Reactions, properties, design, and construction.” State Art Rep. 5: 564–605.
Çokça, E. 2001. “Use of class C fly ashes for the stabilizationof an expansive soil.” J. Geotech. Geoenviron. Eng. 127 (7): 568–573. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(568).
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2007. “Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study.” Microporous Mesoporous Mater. 106 (1–3): 180–191. https://doi.org/10.1016/j.micromeso.2007.02.055.
Das, B. M. 2003. Chemical and mechanical stabilization. Washington, DC: Transportation Research Board.
Daverey, A., N. Tiwari, and K. Dutta. 2019. “Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water.” Environ. Sci. Pollut. Res. 26 (33): 34177–34183. https://doi.org/10.1007/s11356-018-3850-9.
Dayioglu, M., B. Cetin, and S. Nam. 2017. “Stabilization of expansive Belle Fourche shale clay with different chemical additives.” Appl. Clay Sci. 146: 56–69. https://doi.org/10.1016/j.clay.2017.05.033.
Deka, A., and S. Sekharan. 2017. “Contaminant retention characteristics of fly ash–bentonite mixes.” Waste Manage. Res. 35 (1): 40–46. https://doi.org/10.1177/0734242X16670002.
Edil, T. B., H. A. Acosta, and C. H. Benson. 2006. “Stabilizing soft fine-grained soils with fly ash.” J. Mater. Civ. Eng. 18 (2): 283–294. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(283).
Fauzi, A., M. F. Nuruddin, A. B. Malkawi, and M. Abdullah. 2016. “Study of fly ash characterization as a cementitious material.” Procedia Eng. 148: 487–493. https://doi.org/10.1016/j.proeng.2016.06.535.
Feng, W., B. Lalit, Z. Yin, and J. Yin. 2017a. “Long-term non-linear creep and swelling behavior of Hong Kong marine deposits in oedometer condition.” Comput. Geotech. 84: 1–15. https://doi.org/10.1016/j.compgeo.2016.11.009.
Feng, W.-Q., J.-H. Yin, X.-M. Tao, F. Tong, and W.-B. Chen. 2017b. “Time and strain-rate effects on viscous stress-strain behavior of plasticine material.” Int. J. Geomech. 17 (5): 04016115. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000806.
Firat, S., J. M. Khatib, G. Yilmaz, and A. T. Comert. 2017. “Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials.” Waste Manage. Res. 35 (7): 747–756. https://doi.org/10.1177/0734242X17705726.
Fredlund, D. G., H. Rahardjo, and M. D. Fredlund. 2012. Unsaturated soil mechanics in engineering practice. Hoboken, NJ: John Wiley & Sons.
Göktepe, A. B., A. Sezer, G. I. Sezer, and K. Ramyar. 2008. “Classification of time-dependent unconfined strength of fly ash treated clay.” Constr. Build. Mater. 22 (4): 675–683. https://doi.org/10.1016/j.conbuildmat.2006.10.008.
Guo, Y., M. Liu, X. He, H. Tan, B. Ma, and F. Chen. 2017. “Effect of wet-and dry-grind fly ash on the durability of concrete.” ZKG Int. 70 (4): 50–55.
Hawlader, B. C., B. Muhunthan, and G. Imai. 2003. “Viscosity effects on one-dimensional consolidation of clay.” Int. J. Geomech. 3 (1): 99–110. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(99).
Iyer, K. K. R., J. Joseph, B. C. F. L. Lopes, D. N. Singh, and A. Tarantino. 2018. “Water retention characteristics of swelling clays in different compaction states.” Geomech. Geoeng. 13 (2): 88–103. https://doi.org/10.1080/17486025.2017.1396363.
Jaditager, M., and N. Sivakugan. 2018. “Consolidation behavior of fly ash-based geopolymer-stabilized dredged mud.” J. Waterway, Port, Coastal, Ocean Eng. 144 (4): 06018003. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000455.
Jones, D. E., Jr, and W. G. Holtz. 1973. “Expansive soils-the hidden disaster.” Civ. Eng. 43: 8.
Jones, L. D., and I. Jefferson. 2012. Expansive soils, 413–441. London: Institute of Civil Engineers Publishing.
Kaniraj, S. R., and V. Gayathri. 2004. “Permeability and consolidation characteristics of compacted fly ash.” J. Energy Eng. 130 (1): 18–43. https://doi.org/10.1061/(ASCE)0733-9402(2004)130:1(18).
Katti, R. K. 1978. Search for solutions to problems in black cotton soils. Kharagpur, India: Indian Institute of Technology.
Kim, B., M. Prezzi, and R. Salgado. 2005. “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments.”J. Geotech. Geoenviron. Eng. 131 (7): 914–924. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914).
Krivoshein, P. K., D. S. Volkov, O. B. Rogova, and M. A. Proskurnin. 2020. “FTIR photoacoustic spectroscopy for identification and assessment of soil components: Chernozems and their size fractions.” Photoacoustics 18: 100162. https://doi.org/10.1016/j.pacs.2020.100162.
Kumar, P., S. Chandra, and R. Vishal. 2006. “Comparative study of different subbase materials.” J. Mater. Civ. Eng. 18 (4): 576–580. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(576).
Le Guillou, F., W. Wetterlind, R. A. V. Rossel, W. Hicks, M. Grundy, and S. Tuomi. 2015. “How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon?” Soil Res. 53 (8): 913–921. https://doi.org/10.1071/SR15019.
Little, D. N., and S. Nair. 2009. Recommended practice for stabilization of subgrade soils and base materials NCHRP (National Cooperative Highway Research Program). Washington, DC: Texas A&M Univ., Texas, Transportation Research Board of the National Academies.
Liu, Y., F. Zeng, B. Sun, P. Jia, and I. T. Graham. 2019. “Structural characterizations of aluminosilicates in two types of fly ash samples from Shanxi Province, North China.” Minerals 9 (6): 358. https://doi.org/10.3390/min9060358.
Ma, C., L. Chen, and B. Chen. 2016. “Experimental study of effect of fly ash on self-compacting rammed earth construction stabilized with cement-based composites.” J. Mater. Civ. Eng. 28 (7): 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0001518.
Madejová, J., W. P. Gates, and S. Petit. 2017. “IR spectra of clay minerals.” Dev. Clay Sci. 8: 107–149. https://doi.org/10.1016/B978-0-08-100355-8.00005-9.
Mir, B. A., and A. Sridharan. 2013. “Physical and compaction behaviour of clay soil–fly ash mixtures.” Geotech. Geol. Eng. 31 (4): 1059–1072. https://doi.org/10.1007/s10706-013-9632-8.
Mir, B. A., and A. Sridharan. 2014. “Volume change behavior of clayey soil–fly ash mixtures.” Int. J. Geotech. Eng. 8 (1): 72–83. https://doi.org/10.1179/1939787913Y.0000000004.
Moghal, A. A. B., B. C. S. Chittoori, B. M. Basha, and M. A. Al-Shamrani. 2017. “Target reliability approach to study the effect of fiber reinforcement on UCS behavior of lime treated semiarid soil.” J. Mater. Civ. Eng. 29 (6): 04017014. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001835.
Palkovic, S. D., S. Yip, and O. Büyüköztürk. 2017. “A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates.” J. Mech. Phys. Solids 109: 160–177. https://doi.org/10.1016/j.jmps.2017.08.012.
Phanikumar, B. R. 2009. “Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: A comparative study.” Geomech. Geoeng. 4 (2): 175–181. https://doi.org/10.1080/17486020902856983.
Phani Kumar, B. R., and R. S. Sharma. 2004. “Effect of fly ash on engineering properties of expansive soils.” J. Geotech. Geoenviron. Eng. 130 (7): 764–767. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(764).
Phanikumar, B. R., and R. S. Sharma. 2007. “Volume change behavior of fly ash-stabilized clays.” J. Mater. Civ. Eng. 19 (1): 67–74. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(67).
Prasad, B., and K. K. Mondal. 2009. “Environmental impact of manganese due to its leaching from coal fly ash.” J. Environ. Sci. Eng. 51 (1): 27–32.
Sakthivel, T., D. L. Reid, I. Goldstein, L. Hench, and S. Seal. 2013. “Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation.” Environ. Sci. Technol. 47 (11): 5843–5850. https://doi.org/10.1021/es3048174.
Saride, S., and T. T. Dutta. 2016. “Effect of fly-ash stabilization on stiffness modulus degradation of expansive clays.” J. Mater. Civ. Eng. 28 (12): 04016166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001678.
Sebastian Bryson, L., M. Mahmoodabadi, and K. Adu-Gyamfi. 2017. “Prediction of consolidation and shear behavior of fly ash–soil mixtures using mixture theory.” J. Mater. Civ. Eng. 29 (11): 04017222. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002077.
Singh, M. J., L. Borana, F. Weiqiang, and D-S. Xu. 2021. “Long-term swelling characteristics of montmorillonite clay with and without Fly Ash: Wetting–drying cycle influence in 1D oedometer condition.” J. Test. Eval. 51. https://doi.org/10.1520/JTE20210248.
Singh, M. J., F. Weiqiang, X. Dong-Sheng, and L. Borana. 2020. “Experimental study of compression behavior of Indian black cotton soil in oedometer condition.” Int. J. Geosynth. Ground Eng. 6 (2): 30. https://doi.org/10.1007/s40891-020-00207-0.
Sivapullaiah, P. V, J. P. Prashanth, and A. Sridharan. 1996. “Effect of fly ash on the index properties of black cotton soil.” Soils Found. 36 (1): 97–103. https://doi.org/10.3208/sandf.36.97.
Sobhan, K., and M. Mashnad. 2003. “Mechanical stabilization of cemented soil–fly ash mixtures with recycled plastic strips.” J. Environ. Eng. 129 (10): 943–947. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(943).
Sridharan, A., N. S. Pandian, and S. Srinivas. 2001. “Compaction behaviour of Indian coal ashes.” Proc. Inst. Civ. Eng. Ground Improv. 5 (1): 13–22. https://doi.org/10.1680/grim.2001.5.1.13.
Sudhakaran, S. P., A. K. Sharma, and S. Kolathayar. 2018. “Soil stabilization using bottom ash and areca fiber: Experimental investigations and reliability analysis.” J. Mater. Civ. Eng. 30 (8): 04018169. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002326.
Suzanne Powell, J., W. Andy Take, and V. H. R. Greg Siemens. 2012. “Time-dependent behaviour of the Bearpaw Shale in oedometric loading and unloading.” Can. Geotech. J. 49 (12): 427–441. https://doi.org/10.1139/t2012-004
Tan, F., W.-H. Zhou, and K.-V. Yuen. 2018. “Effect of loading duration on uncertainty in creep analysis of clay.” Int. J. Numer. Anal. Methods Geomech. 42 (11): 1235–1254. https://doi.org/10.1002/nag.2788.
Xu, D., M. Huang, and Y. Zhou. 2020a. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Xu, D., Q. Liu, Y. Qin, and B. Chen. 2020b. “Analytical approach for crack identification of glass fiber reinforced polymer–sea sand concrete composite structures based on strain dissipations.” Struct. Health Monit. 1–13. https://doi.org/10.1177/1475921720974290.
Xu, D., H. Liu, R. Rui, and Y. Gao. 2019b. “Cyclic and post cyclic simple shear behavior of binary sand-gravel mixtures with various gravel contents.” Soil Dyn. Earthquake Eng. 123: 230–241. https://doi.org/10.1016/j.soildyn.2019.04.030.
Xu, D., Z. Tang, and L. Zhang. 2019c. “Interpretation of coarse effect in simple shear behavior of binary sand-gravel mixture by DEM with authentic particle shape.” Constr. Build. Mater. 195: 292–304. https://doi.org/10.1016/j.conbuildmat.2018.11.059.
Xu, D., X. Xu, W. Li, and B. Fatahi. 2020c. “Field experiments on laterally loaded piles for an offshore wind farm.” Mar. Struct. 69: 102684. https://doi.org/10.1016/j.marstruc.2019.102684.
Xu, D.-S., J.-Y. Tang, Y. Zou, R. Rui, and H.-B. Liu. 2019a. “Macro and micro investigation of gravel content on simple shear behavior of sand-gravel mixture.” Constr. Build. Mater. 221: 730–744. https://doi.org/10.1016/j.conbuildmat.2019.06.091.
Yilmaz, Y., H. S. Coban, B. Cetin, and T. B. Edil. 2019. “Use of standard and off-spec fly ashes for soil stabilization.” J. Mater. Civ. Eng. 31 (2): 04018390. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002599.
Yin, J.-H. 1990. “Constitutive modelling of time dependent stress strain behavior of soils.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Manitoba.
Yin, J.-H. 1999. “Non-linear creep of soils in oedometer tests.” Géotechnique 49 (5): 699–707. https://doi.org/10.1680/geot.1999.49.5.699.
Yin, J.-H., and J. Graham. 1989. “Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays.” Can. Geotech. J. 26: 199–209. https://doi.org/10.1139/t89-029.
Yin, J.-H., and J. Graham. 1994. “Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress–strain behaviour of clays.” Can. Geotech. J. 31 (1): 42–52. https://doi.org/10.1139/t94-005.
Yin, J.-H., and F. Tong. 2011. “Constitutive modeling of time-dependent stress–strain behaviour of saturated soils exhibiting both creep and swelling.” Can. Geotech. J. 48 (12): 1870–1885. https://doi.org/10.1139/t11-076.
Yu, H., J. Yin, A. Soleimanbeigi, and W. J. Likos. 2017. “Effects of curing time and fly ash content on properties of stabilized dredged material.” J. Mater. Civ. Eng. 29 (10): 04017199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002032.
Zhang, J., J. Xiao, S. Li, and W. Ran. 2017. “Manure amendment increases the content of nanomineral allophane in an acid arable soil.” Sci. Rep. 7 (1): 14256. https://doi.org/10.1038/s41598-017-14445-2.
Zhu, H.-H., C.-C. Zhang, G.-X. Mei, B. Shi, and L. Gao. 2017. “Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives.” Mar. Georesour. Geotechnol. 35 (5): 688–697. https://doi.org/10.1080/1064119X.2016.1217958.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 3March 2022

History

Received: Jan 7, 2021
Accepted: Oct 30, 2021
Published online: Dec 27, 2021
Published in print: Mar 1, 2022
Discussion open until: May 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Moirangthem Johnson Singh [email protected]
Doctoral Student, Discipline of Civil Engineering, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India. Email: [email protected]
Assistant Professor, Dept. of Ocean Sciences and Engineering, Southern Univ. of Science and Technology, 1088 Xueyuan Ave., Shenzhen 518055, People's Republic of China. ORCID: https://orcid.org/0000-0001-5480-9719. Email: [email protected]
Dong-sheng Xu [email protected]
Professor, School of Civil Engineering and Architecture, Wuhan Univ. of Technology, 1040 Heping Ave., Wuchang Qu, Wuhan Shi, Hubei Sheng 430070, People's Republic of China. Email: [email protected]
Mrigendra Dubey [email protected]
Assistant Professor, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India. Email: [email protected]
Assistant Professor, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India (corresponding author). ORCID: https://orcid.org/0000-0003-2168-7254. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Nonlinear creep of early-age cement mortar assessed by minutes-long flexural test, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129442, 358, (129442), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share