Technical Papers
Dec 20, 2021

Three-Dimensional Modeling of Geogrid Pullout Test Using Finite-Element Method

Publication: International Journal of Geomechanics
Volume 22, Issue 3

Abstract

Three-dimensional (3D) modeling of soil–geogrid interaction is a numerical challenge when simulating reinforced soil systems. Modeling the soil–geogrid interaction requires an appropriate consideration of the geogrid geometry, the materials’ model, and the interface properties. In this study, a series of 3D models were developed using the finite-element method (FEM) to investigate the response of geogrid under confined and unconfined conditions focusing on geogrid tensile stiffness effects. In this regard, a modeling approach for the geogrids whose configuration is complex was proposed. The validity of the models was also justified by the good agreement between calculated numerical results and measured experimental data. Moreover, particular emphasis was placed on visualizing the soil–geogrid interaction and load transfer mechanisms. The load transfer mechanisms were embodied not only through the distributions of displacement, strain, and tensile force along the geogrid but also through the displacement fields inside the soil domain. The results from two series of tests showed that the proposed approach was capable of reasonably capturing the geogrid response, whether under unconfined or soil-confined conditions.

Get full access to this article

View all available purchase options and get full access to this article.

References

ABAQUS/Standard. 2017. ABAQUS User’s Manuals. Providence, RI: Dassault Systèmes Simulia Crop.
Abdi, M. R., and H. Mirzaeifar. 2017. “Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test.” Soils Found. 57 (6): 1045–1058. https://doi.org/10.1016/j.sandf.2017.08.030.
Abdi, M. R., and M. Safdari Seh Gonbad. 2020. “Enhancement of soil–geogrid interactions in direct shear mode using attached elements as anchors.” Eur. J. Environ. Civ. Eng. 24 (8): 1161–1179. https://doi.org/10.1080/19648189.2018.1454861.
Abdi, M. R., and A. R. Zandieh. 2014. “Experimental and numerical analysis of large scale pull out tests conducted on clays reinforced with geogrids encapsulated with coarse material.” Geotext. Geomembr. 42 (5): 494–504. https://doi.org/10.1016/j.geotexmem.2014.07.008.
Abdollahi, M., S. N. Moghaddas Tafreshi, and B. Leshchinsky. 2019. “Experimental and numerical assessment of geogrid-EPS geofoam systems for protecting buried utilities.” Geosynth. Int. 26 (4): 333–353. https://doi.org/10.1680/jgein.19.00013.
Abramento, M., and A. J. Whittle. 1995. “Analysis of pullout tests for planar reinforcements in soil.” J. Geotech. Eng. 121 (6): 476–485. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:6(476).
Alagiyawanna, A. M. N., M. Sugimoto, S. Sato, and H. Toyota. 2001. “Influence of longitudinal and transverse members on geogrid pullout behavior during deformation.” Geotext. Geomembr. 19 (8): 483–507. https://doi.org/10.1016/S0266-1144(01)00020-6.
Alfaro, M. C., S. Hayashi, N. Miura, and K. Watanabe. 1995. “Pullout interaction mechanism of geogrid strip reinforcement.” Geosynth. Int. 2 (4): 679–698. https://doi.org/10.1680/gein.2.0030.
Bathurst, R. J., and F. M. Ezzein. 2016. “Geogrid pullout load–strain behaviour and modelling using a transparent granular soil.” Geosynth. Int. 23 (4): 271–286. https://doi.org/10.1680/jgein.15.00051.
Bathurst, R. J., and K. Hatami. 1998. “Seismic response analysis of a geosynthetic-reinforced soil retaining wall.” Geosynth. Int. 5 (1–2): 127–166. https://doi.org/10.1680/gein.5.0117.
Bathurst, R. J., and F. M. Naftchali. 2021. “Geosynthetic reinforcement stiffness for analytical and numerical modelling of reinforced soil structures.” Geotext. Geomembr. 49 (4): 921–940. https://doi.org/10.1016/j.geotexmem.2021.01.003.
Berg, R. R., B. R. Christopher, and N. C. Samtani. 2009. Design and construction of mechanically stabilized earth walls and reinforced soil slopes. Rep. No. FHWA-NHI-10-024. Washington, DC: US Federal Highway Administration.
Bergado, D. T., and J. C. Chai. 1994. “Pullout force/displacement relationship of extensible grid reinforcements.” Geotext. Geomembr. 13 (5): 295–316. https://doi.org/10.1016/0266-1144(94)90025-6.
Bergado, D. T., J. C. Chai, H. O. Abiera, M. C. Alfaro, and A. S. Balasubramaniam. 1993. “Interaction between cohesive-frictional soil and various grid reinforcements.” Geotext. Geomembr. 12 (4): 327–349. https://doi.org/10.1016/0266-1144(93)90008-C.
Cardile, G., D. Gioffrè, N. Moraci, and L. S. Calvarano. 2017. “Modelling interference between the geogrid bearing members under pullout loading conditions.” Geotext. Geomembr. 45 (3): 169–177. https://doi.org/10.1016/j.geotexmem.2017.01.008.
Cardile, G., N. Moraci, and L. S. Calvarano. 2016. “Geogrid pullout behaviour according to the experimental evaluation of the active length.” Geosynth. Int. 23 (3): 194–205. https://doi.org/10.1680/jgein.15.00042.
Chen, C., G. R. McDowell, and N. H. Thom. 2014. “Investigating geogrid-reinforced ballast: Experimental pull-out tests and discrete element modelling.” Soils Found. 54 (1): 1–11. https://doi.org/10.1016/j.sandf.2013.12.001.
Chen, W. B., W. H. Zhou, and X. Y. Jing. 2019. “Modeling geogrid pullout behavior in sand using discrete-element method and effect of tensile stiffness.” Int. J. Geomech. 19 (5): 1–13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001424.
Desai, C. S., M. M. Zaman, J. G. Lightner, and H. J. Siriwardane. 1984. “Thin-layer element for interfaces and joints.” Int. J. Numer. Anal. Methods Geomech. 8 (1): 19–43. https://doi.org/10.1002/nag.1610080103.
Dong, Y.-L., J. Han, and X.-H. Bai. 2011. “Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures.” Geotext. Geomembr. 29 (2): 83–91. https://doi.org/10.1016/j.geotexmem.2010.10.007.
Elias, V., B. R. Christopher, and R. R. Berg. 2001. Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines. Rep. No. FHWA-NHI-00-043. Washington, DC: US Federal Highway Administration.
El Sawwaf, M. 2009. “Experimental and numerical study of eccentrically loaded strip footings resting on reinforced sand.” J. Geotech. Geoenviron. Eng. 135 (10): 1509–1518. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000093.
Ezzein, F. M., and R. J. Bathurst. 2014. “A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil.” Geotext. Geomembr. 42 (3): 246–255. https://doi.org/10.1016/j.geotexmem.2014.04.003.
Fannin, R. J., and D. M. Raju. 1993. “On the pullout resistance of geosynthetics.” Can. Geotech. J. 30 (3): 409–417. https://doi.org/10.1139/t93-036.
Farrag, K., Y. B. Acar, and I. Juran. 1993. “Pull-out resistance of geogrid reinforcements.” Geotext. Geomembr. 12 (2): 133–159. https://doi.org/10.1016/0266-1144(93)90003-7.
Farrag, K., and M. Morvant. 2004. Evaluation of interaction properties of geosynthetics in cohesive soils: Lab and field pullout tests. Rep. No. FHWA/LA.03/380. Baton Rouge, LA: Louisiana Transportation Research Center.
Ferreira, F. B., C. S. Vieira, M. L. Lopes, and D. M. Carlos. 2016. “Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil.” Eur. J. Environ. Civ. Eng. 20 (9): 1147–1180. https://doi.org/10.1080/19648189.2015.1090927.
Ferreira, J. A. Z., and J. G. Zornberg. 2015. “A transparent pullout testing device for 3D evaluation of soil–geogrid interaction.” ASTM Geotech. Test. J. 38 (5): 686–707. https://doi.org/10.1520/GTJ20140198.
Gao, G., and M. A. Meguid. 2018. “Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis.” Geotext. Geomembr. 46 (6): 685–698. https://doi.org/10.1016/j.geotexmem.2018.07.001.
Ghazavi Baghini, E., M. M. Toufigh, and V. Toufigh. 2016. “Mesh-free analysis applied in reinforced soil slopes.” Comput. Geotech. 80: 322–332. https://doi.org/10.1016/j.compgeo.2016.09.001.
Ghazavi Baghini, E., M. M. Toufigh, and V. Toufigh. 2018. “Analysis of pile foundations using natural element method with disturbed state concept.” Comput. Geotech. 96: 178–188. https://doi.org/10.1016/j.compgeo.2017.11.005.
Ghazavi Baghini, E., M. M. Toufigh, and V. Toufigh. 2019. “Application of DSC model for natural-element analysis of pile foundations under cyclic loading.” Int. J. Geomech. 19 (7): 1–17. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001439.
Griffiths, D. V. 1990. “Failure criteria interpretation based on Mohr-Coulomb friction.” J. Geotech. Eng. 116 (6): 986–999. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:6(986).
Griffiths, D. V., and P. A. Lane. 1999. “Slope stability analysis by finite elements.” Géotechnique 49 (3): 387–403. https://doi.org/10.1680/geot.1999.49.3.387.
Gurung, N., and Y. Iwao. 1999. “Comparative model study of geosynthetic pull-out response.” Geosynth. Int. 6 (1): 53–68. https://doi.org/10.1680/gein.6.0143.
Hataf, N., and A. Sadr. 2015. “Experimental, numerical and analytical study on conventional and innovative Grid-Anchor system in the pull-out test.” Geomech. Geoeng. 10 (3): 182–193. https://doi.org/10.1080/17486025.2014.933893.
Helwany, S. M. B. 2007. Applied soil mechanics with ABAQUS applications. Hoboken, NJ: Wiley.
Helwany, S. M. B., M. Budhu, and D. McCallen. 2001. “Seismic analysis of segmental retaining walls. I: Model verification.” J. Geotech. Geoenviron. Eng. 127 (9): 741–749. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(741).
Hussein, M. G., and M. A. Meguid. 2016. “A three-dimensional finite element approach for modeling biaxial geogrid with application to geogrid-reinforced soils.” Geotext. Geomembr. 44 (3): 295–307. https://doi.org/10.1016/j.geotexmem.2015.12.004.
Hussein, M. G., and M. A. Meguid. 2019. “Improved understanding of geogrid response to pullout loading: Insights from three-dimensional finite element analysis.” Can. Geotech. J. 57 (2): 277–293. https://doi.org/10.1139/cgj-2018-0384.
Hussein, M. G., M. A. Meguid, and Y. Mowafy. 2009. “On the 3D modelling of soil-geogrid interaction.” In Vol. 138 of Proc., 62nd. Conf. GeoHalifax 2009, 986–991. Halifax, Canada: Canadian Geotechnical Society.
Jewell, R. A., G. W. E. Milligan, R. W. Sarsby, and D. Dubois. 1984. “Interaction between soil and geogrid.” In Proc., Symp. on Polymer Grid Reinforcement in Civil Engineering, 18–30. London: Thomas Telford. https://doi.org/abs/10.1680/pgr.02425.0005.
Juran, I., G. Knochenmus, Y. B. Acar, and A. Arman. 1988. “Pull-out response of geotextiles and geogrids (synthesis of available experimental data).” In Vol. 18 of Proc., Symp. on Geotextiles for Soil Improvement, 92–111. Reston, VA: ASCE Geotech.
Lee, K. M., and V. R. Manjunath. 2000. “Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing.” Can. Geotech. J. 37 (4): 828–842. https://doi.org/10.1139/t00-016.
Leng, J., and M. A. Gabr. 2005. “Numerical analysis of stress–deformation response in reinforced unpaved road sections.” Geosynth. Int. 12 (2): 111–119. https://doi.org/10.1680/gein.2005.12.2.111.
Lentz, R. W., and J. N. Pyatt. 1988. “Pull-out resistance of geogrids in sand.” Transp. Res. Rec. 1188: 48–55.
Lopes, M. J., and M. L. Lopes. 1999. “Soil-geosynthetic interaction — influence of soil particle size and geosynthetic structure.” Geosynth. Int. 6 (4): 261–282. https://doi.org/10.1680/gein.6.0153.
McDowell, G. R., O. Harireche, H. Konietzky, S. F. Brown, and N. H. Thom. 2006. “Discrete element modelling of geogrid-reinforced aggregates.” Proc., Inst. Civ. Eng. Geotech. Eng. 159 (1): 35–48. https://doi.org/10.1680/geng.2006.159.1.35.
Miao, C. X., J. J. Zheng, R. J. Zhang, and L. Cui. 2017. “DEM modeling of pullout behavior of geogrid reinforced ballast: The effect of particle shape.” Comput. Geotech. 81: 249–261. https://doi.org/10.1016/j.compgeo.2016.08.028.
Moraci, N., G. Cardile, D. Gioffrè, M. C. Mandaglio, L. S. Calvarano, and L. Carbone. 2014. “Soil geosynthetic interaction: Design parameters from experimental and theoretical analysis.” Transp. Infrastruct. Geotech. 1 (2): 165–227. https://doi.org/10.1007/s40515-014-0007-2.
Moraci, N., and D. Gioffrè. 2006. “A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil.” Geotext. Geomembr. 24 (2): 116–128. https://doi.org/10.1016/j.geotexmem.2005.11.001.
Moraci, N., and P. Recalcati. 2006. “Factors affecting the pullout behavior of extruded geogrids embedded in compacted granular soil.” Geotext. Geomembr. 24 (4): 220–242. https://doi.org/10.1016/j.geotexmem.2006.03.001.
Mosallanezhad, M., S. H. Sadat Taghavi, N. Hataf, and M. C. Alfaro. 2016. “Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions.” Geotext. Geomembr. 44 (1): 70–80. https://doi.org/10.1016/j.geotexmem.2015.07.006.
Ochiai, H., J. Otani, S. Hayashic, and T. Hirai. 1996. “The pull-out resistance of geogrids in reinforced soil.” Geotext. Geomembr. 14 (1): 19–42. https://doi.org/10.1016/0266-1144(96)00027-1.
Palmeira, E. M. 2009. “Soil–geosynthetic interaction: Modelling and analysis.” Geotext. Geomembr. 27 (5): 368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003.
Palmeira, E. M., and G. W. E. Milligan. 1989. “Scale and other factors affecting the results of pull-out tests of grids buried in sand.” Géotechnique 39 (3): 511–542. https://doi.org/10.1680/geot.1989.39.3.511.
Perkins, S. W. 2000. “Constitutive modeling of geosynthetics.” Geotext. Geomembr. 18 (5): 273–292. https://doi.org/10.1016/S0266-1144(99)00021-7.
Perkins, S. W., B. R. Christopher, B. A. Lacina, and J. Klompmaker. 2012. “Mechanistic-empirical modeling of geosynthetic-reinforced unpaved roads.” Int. J. Geomech. 12 (4): 370–380. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000184.
Perkins, S. W., and E. V. Cuelho. 1999. “Soil-geosynthetic interface strength and stiffness relationships from pullout tests.” Geosynth. Int. 6 (5): 321–346. https://doi.org/10.1680/gein.6.0156.
Perkins, S. W., and M. Q. Edens. 2003. “Finite element modeling of a geosynthetic pullout test.” Geotech. Geol. Eng. 21 (4): 357–375. https://doi.org/10.1023/B:GEGE.0000006053.77489.c5.
Roodi, G. H., and J. G. Zornberg. 2017. “Stiffness of soil-geosynthetic composite under small displacements. II: Experimental evaluation.” J. Geotech. Geoenviron. Eng. 143 (10): 1–17. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001769.
Rousé, P. C., R. J. Fannin, and M. Taiebat. 2014. “Sand strength for back-analysis of pull-out tests at large displacement.” Géotechnique 64 (4): 320–324. https://doi.org/10.1680/geot.13.T.021.
Rowe, R. K., and K. W. Liu. 2015. “Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment.” Can. Geotech. J. 52 (12): 2041–2054. https://doi.org/10.1139/cgj-2014-0506.
Rowe, R. K., and B. L. J. Mylleville. 1988. “The analysis of steel-reinforced embankments on soft clay foundations.” In Proc., Int. Conf. on Numerical Methods in Geomechanics, 1273–1278. Rotterdam, Netherlands: AA Balkema.
Saberi, M., C. D. Annan, and J. M. Konrad. 2019. “Implementation of a soil-structure interface constitutive model for application in geo-structures.” Soil Dyn. Earthquake Eng. 116: 714–731. https://doi.org/10.1016/j.soildyn.2018.11.001.
Shuwang, Y., F. Shouzhong, and B. Barr. 1998. “Finite-element modelling of soil-geogrid interaction dealing with the pullout behaviour of geogrids.” Acta Mech. Sin. 14 (4): 371–382. https://doi.org/10.1007/BF02486875.
Sieira, A. C. C. F., D. M. S. Gerscovich, and A. S. F. J. Sayão. 2009. “Displacement and load transfer mechanisms of geogrids under pullout condition.” Geotext. Geomembr. 27 (4): 241–253. https://doi.org/10.1016/j.geotexmem.2008.11.012.
Siriwardane, H., R. Gondle, B. Kutuk, and R. Ingram. 2008. “Experimental investigation and numerical analysis of reinforced geologic media.” In Proc., 12th Int. Conf. on Int. Association for Computer Methods and Advances in Geomechanics (IACMAG), 4369–4376. Goa, India.
Smith, I. M., and D. V. Griffiths. 2004. Programming the finite element method, 4th ed. Chichester, NY: Wiley.
Sugimoto, M., and A. M. N. Alagiyawanna. 2003. “Pullout behavior of geogrid by test and numerical analysis.” J. Geotech. Geoenviron. Eng. 129 (4): 361–371. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(361).
Sugimoto, M., A. M. N. Alagiyawanna, and K. Kadoguchi. 2001. “Influence of rigid and flexible face on geogrid pullout tests.” Geotext. Geomembr. 19 (5): 257–277. https://doi.org/10.1016/S0266-1144(01)00011-5.
Teixeira, S. H. C., B. S. Bueno, and J. G. Zornberg. 2007. “Pullout resistance of individual longitudinal and transverse geogrid ribs.” J. Geotech. Geoenviron. Eng. 133 (1): 37–50. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(37).
Toufigh, V., C. S. Desai, H. Saadatmanesh, V. Toufigh, S. Ahmari, and E. Kabiri. 2014. “Constitutive modeling and testing of interface between backfill soil and fiber-reinforced polymer.” Int. J. Geomech. 14 (3): 04014009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000298.
Toufigh, V., and H. Pahlavani. 2018. “Probabilistic-based analysis of MSE walls using the Latin hypercube sampling method.” Int. J. Geomech. 18 (9): 04018109. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001215.
Tran, V. D. H., M. A. Meguid, and L. E. Chouinard. 2013. “A finite–discrete element framework for the 3D modeling of geogrid–soil interaction under pullout loading conditions.” Geotext. Geomembr. 37: 1–9. https://doi.org/10.1016/j.geotexmem.2013.01.003.
Tran, V. D. H., M. A. Meguid, and L. E. Chouinard. 2015. “Three-dimensional analysis of geogrid-reinforced soil using a finite-discrete element framework.” Int. J. Geomech. 15 (4): 04014066. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000410.
Wang, Z., F. Jacobs, and M. Ziegler. 2016. “Experimental and DEM investigation of geogrid–soil interaction under pullout loads.” Geotext. Geomembr. 44 (3): 230–246. https://doi.org/10.1016/j.geotexmem.2015.11.001.
Wilson-Fahmy, R. F., and R. M. Koerner. 1993. “Finite element modelling of soil-geogrid interaction with application to the behavior of geogrids in a pullout loading condition.” Geotext. Geomembr. 12 (5): 479–501. https://doi.org/10.1016/0266-1144(93)90023-H.
Yogarajah, I., and K. C. Yeo. 1994. “Finite element modelling of pull-out tests with load and strain measurements.” Geotext. Geomembr. 13 (1): 43–54. https://doi.org/10.1016/0266-1144(94)90056-6.
Yu, Y., and R. J. Bathurst. 2017. “Influence of selection of soil and interface properties on numerical results of two soil–geosynthetic interaction problems.” Int. J. Geomech. 17 (6): 04016136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000847.
Yu, Y., I. P. Damians, and R. J. Bathurst. 2015. “Influence of choice of FLAC and PLAXIS interface models on reinforced soil–structure interactions.” Comput. Geotech. 65: 164–174. https://doi.org/10.1016/j.compgeo.2014.12.009.
Yuan, Z., and K. M. Chua. 1990. “Numerical evaluation of the pullout box method for studying soil-reinforcement interaction.” Transp. Res. Rec. 1278: 116–124.
Zheng, C., J. Liu, J. Fan, Y. Luan, and L. Song. 2016. “Research on deformation behavior of isotactic polypropylene in uniaxial geogrid manufacture.” Mater. Des. 91: 1–10. https://doi.org/10.1016/j.matdes.2015.11.075.
Zornberg, J. G., and F. Arriaga. 2003. “Strain distribution within geosynthetic-reinforced slopes.” J. Geotech. Geoenviron. Eng. 129 (1): 32–45. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(32).
Zornberg, J. G., G. H. Roodi, and R. Gupta. 2017. “Stiffness of soil–geosynthetic composite under small displacements: I. Model development.” J. Geotech. Geoenviron. Eng. 143 (10): 04017075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001768.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 3March 2022

History

Received: Feb 18, 2021
Accepted: Aug 16, 2021
Published online: Dec 20, 2021
Published in print: Mar 1, 2022
Discussion open until: May 20, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Iman Amirhosseini [email protected]
Faculty of Civil and Surveying Engineering, Graduate Univ. of Advanced Technology, Kerman 7631885356, Iran. Email: [email protected]
Vahid Toufigh, Ph.D. [email protected]
Associate Professor, Faculty of Civil and Surveying Engineering, Graduate Univ. of Advanced Technology, Kerman 7631885356, Iran (corresponding author). Email: [email protected]
Mohammad Mohsen Toufigh, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Shahid Bahonar Univ. of Kerman, Kerman 7616913439, Iran. Email: [email protected]
Emad Ghazavi-Baghini, Ph.D. [email protected]
Ports and Maritime Organization, Shahid Rajaee Port, Bandar Abbas 7917183797, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Experimental study on the fine-scale characteristics of a geogrid-gravelly soil reinforcement influence zone, Frontiers in Earth Science, 10.3389/feart.2022.1053728, 10, (2023).
  • Optimizing the Microanchor Attachment Angle for Maximum Interaction Enhancement at Granular Soils–Geogrid Interface under Direct Shear Mode, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-7906, 23, 4, (2023).
  • Novel soil-pegged geogrid (PG) interactions in pull-out loading conditions, Geotextiles and Geomembranes, 10.1016/j.geotexmem.2022.04.001, 50, 4, (764-778), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share