Technical Papers
Aug 31, 2021

Experimental and Numerical Investigation on the Dynamic Failure Envelope and Cracking Mechanism of Precompressed Rock under Compression-Shear Loads

Publication: International Journal of Geomechanics
Volume 21, Issue 11

Abstract

The complex response of underground geomaterials subjected to dynamic disturbance arises from the microstructure redistribution under high in- situ stress and the resulting fracture behaviors at multiaxial stress states. Inclined specimens were employed in an axially constrained split Hopkinson pressure bar (SHPB) system to achieve a combination of compression-shear stress states and static-dynamic loads. The loading rate under investigation ranged from 500 to 4,000 GPa/s, along with the axial prestress of 7, 21, 35, 49, and 63 MPa on specimens with an inclination of 0°, 3°, 5°, and 7°. The modified SHPB experimentation and discrete-element method modeling were implemented to unravel the combined effects of the loading rate, preload, and stress path on the failure mechanism of sandstone specimens involving the failure strength and envelope, fracturing pattern, fragmentation, and microcracking process. The positive rate dependence of the failure strength and Drucker–Prager envelope was observed. The preload showed double effects on the failure strength, indicated by an upper bound of the failure envelope as it expanded with the increasing preload. The microdamage accumulated during preloading and the global stress field collectively influenced the failure pattern of the inclined specimen, altering from a shear fracturing mode under dynamic loading or high-preload static-dynamic loading to an axial splitting mode near the specimen surface under low-preload static-dynamic loading.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Funding support from National Natural Science Foundation of China (Nos. 52039007 and 51779164) and Youth Science and Technology Innovation Research Team Fund of Sichuan Province (2020JDTD0001) is gratefully acknowledged.

References

Abou-Sayed, A. S., R. J. Clifton, and L. Hermann. 1976. “The oblique-plate impact experiment.” Exp. Mech. 16 (4): 110–1120.
Alejano, L. R., and A. Bobet. 2012. “Drucker–Prager criterion.” Rock Mech. Rock Eng. 45 (6): 995–999. https://doi.org/10.1007/s00603-012-0278-2.
Armstrong, R. W. 1961. “On size effects in polycrystal plasticity.” J. Mech. Phys. Solids 9 (3): 196–199. https://doi.org/10.1016/0022-5096(61)90018-7.
Armstrong, R. W. 2001. “Plasticity: Grain size effects.” In Encyclopedia of materials: Science and technology, edited by K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Illschner, E. J. Kramer, and S. Mahajan, 7103–7114. Amsterdam, Netherlands: Elsevier.
Branch, M. A., T. F. Coleman, and Y. Li. 1999. “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems.” SIAM J. Sci. Comput. 21 (1): 1–23. https://doi.org/10.1137/S1064827595289108.
Cadoni, E., M. Dotta, D. Forni, G. Riganti, and C. Albertini. 2015. “First application of the 3D-MHB on dynamic compressive behavior of UHPC.” EPJ Web Conf. 94: 01031. https://doi.org/10.1051/epjconf/20159401031.
Chattaraj, R., S. K. Samal, and N. C. Mahanti. 2013. “Dispersion of love wave propagating in irregular anisotropic porous stratum under initial stress.” Int. J. Geomech. 13 (4): 402–408. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000230.
Chen, R., W. Yao, F. Lu, and K. Xia. 2018. “Evaluation of the stress equilibrium condition in axially constrained triaxial SHPB tests.” Exp. Mech. 58 (3): 527–531. https://doi.org/10.1007/s11340-017-0344-5.
Chen, W., and G. Ravichandran. 1997. “Dynamic compressive failure of a glass ceramic under lateral confinement.” J. Mech. Phys. Solids 45 (8): 1303–1328. https://doi.org/10.1016/S0022-5096(97)00006-9.
Christensen, R. J., S. R. Swanson, and W. S. Brown. 1972. “Split-Hopkinson-bar tests on rock under confining pressure.” Exp. Mech. 12 (11): 508–513. https://doi.org/10.1007/BF02320747.
Dai, F., S. Huang, K. Xia, and Z. Tan. 2010. “Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar.” Rock Mech. Rock Eng. 43 (6): 657–666. https://doi.org/10.1007/s00603-010-0091-8.
Dai, F., B. Li, N. Xu, Y. Fan, and C. Zhang. 2016a. “Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring.” Int. J. Rock Mech. Min. Sci. 86: 269–281. https://doi.org/10.1016/j.ijrmms.2016.05.001.
Dai, F., Y. Xu, T. Zhao, N. Xu, and Y. Liu. 2016b. “Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split hopkinson pressure bar tests.” Int. J. Rock Mech. Min. Sci. 88: 49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
Dorogoy, A., and D. Rittel. 2005a. “Numerical validation of the shear compression specimen. Part I: Quasi-static large strain testing.” Exp. Mech. 45 (2): 167–177. https://doi.org/10.1007/BF02428190.
Dorogoy, A., and D. Rittel. 2005b. “Numerical validation of the shear compression specimen. Part II: Dynamic large strain testing.” Exp. Mech. 45 (2): 178–185. https://doi.org/10.1007/BF02428191.
Drucker, D. C., and W. Prager. 1952. “Soil mechanics and plastic analysis or limit design.” Q. Appl. Math. 10 (2): 157–165. https://doi.org/10.1090/qam/48291.
Du, H. B., F. Dai, Y. Xu, Y. Liu, and H. Xu. 2018. “Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing.” Int. J. Rock Mech. Min. Sci. 108: 43–57. https://doi.org/10.1016/j.ijrmms.2018.05.008.
Du, H. B., F. Dai, Y. Xu, Z. Yan, and M. D. Wei. 2020. “Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression-shear impacting.” Int. J. Mech. Sci. 165: 105219. https://doi.org/10.1016/j.ijmecsci.2019.105219.
Fairbairn, E. M. R., and F. J. Ulm. 2002. “A tribute to Fernando LLB Carneiro (1913–2001), engineer and scientist who invented the Brazilian test.” Mater. Struct. 35: 195–196.
Farbaniec, L., J. D. Hogan, K. Y. Xie, M. Shaeffer, K. J. Hemker, and K. T. Ramesh. 2017. “Damage evolution of hot-pressed boron carbide under confined dynamic compression.” Int. J. Impact Eng. 99: 75–84. https://doi.org/10.1016/j.ijimpeng.2016.09.008.
Field, J. E., S. M. Walley, W. G. Proud, H. T. Goldrein, and C. R. Siviour. 2004. “Review of experimental techniques for high rate deformation and shock studies.” Int. J. Impact Eng. 30 (7): 725–775. https://doi.org/10.1016/j.ijimpeng.2004.03.005.
Forquin, P., G. Gary, and F. Gatuingt. 2008. “A testing technique for concrete under confinement at high rates of strain.” Int. J. Impact Eng. 35 (6): 425–446. https://doi.org/10.1016/j.ijimpeng.2007.04.007.
Frew, D. J., S. A. Akers, W. Chen, and M. L. Green. 2010. “Development of a dynamic triaxial Kolsky bar.” Meas. Sci. Technol. 21 (10): 105704–13. https://doi.org/10.1088/0957-0233/21/10/105704.
Gama, B. A., S. L. Lopatnikov, and J. W. Gillespie. 2004. “Hopkinson bar experimental technique: A critical review.” Appl. Mech. Rev. 57 (4): 223–250. https://doi.org/10.1115/1.1704626.
Gong, F. Q., X. F. Si, X. B. Li, and S. Y. Wang. 2019. “Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar.” Int. J. Rock Mech. Min. Sci. 113: 211–219. https://doi.org/10.1016/j.ijrmms.2018.12.005.
Gupta, Y. M. 1983. “Shear and compression wave measurements in shocked polycrystalline Al2O3.” J. Geophys. Res.: Solid Earth 88 (B5): 4304–4312. https://doi.org/10.1029/JB088iB05p04304.
Hazzard, J. F., and R. P. Young. 2000. “Simulating acoustic emissions in bonded-particle models of rock.” Int. J. Rock Mech. Min. Sci. 37 (5): 867–872. https://doi.org/10.1016/S1365-1609(00)00017-4.
Hazzard, J. F., R. P. Young, and S. C. Maxwell. 2000. “Micromechanical modeling of cracking and failure in brittle rocks.” J. Geophys. Res.: Solid Earth 105 (B7): 16683–16697. https://doi.org/10.1029/2000JB900085.
Hoek, E., and E. T. Brown. 1980. Underground excavations in rock, 93–101. Boca Raton, FL: CRC Press.
Hokka, M., J. Black, D. Tkalich, M. Fourmeau, A. Kane, N. H. Hoang, C. C. Li, W. W. Chen, and V. T. Kuokkala. 2016. “Effects of strain rate and confining pressure on the compressive behavior of Kuru granite.” Int. J. Impact Eng. 91: 183–193. https://doi.org/10.1016/j.ijimpeng.2016.01.010.
Jiang, R. C., F. Dai, Y. Liu, and A. Li. 2021. “Fast marching method for microseismic source location in cavern-containing rockmass: Performance analysis and engineering application.” Engineering. 7 (7): 1023–1034. https://doi.org/10.1016/j.eng.2020.10.019.
Jing, L. 2003. “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering.” Int. J. Rock Mech. Min. Sci. 40 (3): 283–353. https://doi.org/10.1016/S1365-1609(03)00013-3.
Khazaei, C., J. Hazzard, and R. Chalaturnyk. 2015. “Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling.” Comput. Geotech. 67: 94–102. https://doi.org/10.1016/j.compgeo.2015.02.012.
Khosravi, A., and R. Simon. 2018. “Verification of the CSDS model in estimating the postpeak behavior of hard rocks.” Int. J. Geomech. 18 (3): 04017166. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001090.
Li, A., N. Xu, F. Dai, G. Gu, Z. Hu, and Y. Liu. 2018a. “Stability analysis and failure mechanism of the steeply inclined bedded rock masses surrounding a large underground opening.” Tunnelling Underground Space Technol. 77: 45–58. https://doi.org/10.1016/j.tust.2018.03.023.
Li, A., F. Dai, Y. Liu, H. B. Du, and R. C. Jiang. 2021. “Dynamic stability evaluation of underground cavern sidewalls against flexural toppling considering excavation-induced damage.” Tunn. Undergr. Space. Technol. 112, 103903. https://doi.org/10.1016/j.tust.2021.103903.
Li, X. B., Z. L. Zhou, T. S. Lok, L. Hong, and T. B. Yin. 2008. “Innovative testing technique of rock subjected to coupled static and dynamic loads.” Int. J. Rock Mech. Min. Sci. 45 (5): 739–748. https://doi.org/10.1016/j.ijrmms.2007.08.013.
Li, X. F., Q. B. Zhang, H. B. Li, and J. Zhao. 2018b. “Grain-based discrete element method (gb-dem) modelling of multi-scale fracturing in rocks under dynamic loading.” Rock Mech. Rock Eng. 51 (12): 3785–3817. https://doi.org/10.1007/s00603-018-1566-2.
Lindholm, U. S., L. M. Yeakley, and A. Nagy. 1974. “The dynamic strength and fracture properties of dresser basalt.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (5): 181–191. https://doi.org/10.1016/0148-9062(74)90885-7.
Liu, K., J. Zhao, G. Wu, A. Maksimenko, A. Haque, and Q. B. Zhang. 2020. “Dynamic strength and failure modes of sandstone under biaxial compression.” Int. J. Rock Mech. Min. Sci. 128: 104260. https://doi.org/10.1016/j.ijrmms.2020.104260.
Liu, Y., and F. Dai. 2021. “A review of experimental and theoretical research on the deformation and failure behavior of rocks under cyclic loads.” J. Rock Mech. Geotech. https://doi.org/10.1016/j.jrmge.2021.03.012.
Nguyen, N. H. T., H. H. Bui, G. D. Nguyen, and J. Kodikara. 2017. “A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties.” Int. J. Plast. 98: 175–196. https://doi.org/10.1016/j.ijplas.2017.07.008.
Nie, X., W. W. Chen, X. Sun, and D. W. Templeton. 2007. “Dynamic failure of borosilicate glass under compression/shear loading experiments.” J. Am. Ceram. Soc. 90 (8): 2556–2562. https://doi.org/10.1111/j.1551-2916.2007.01819.x.
Paliwal, B., and K. T. Ramesh. 2008. “An interacting micro-crack damage model for failure of brittle materials under compression.” J. Mech. Phys. Solids 56 (3): 896–923. https://doi.org/10.1016/j.jmps.2007.06.012.
Paliwal, B., K. T. Ramesh, J. W. McCauley, and M. Chen. 2008. “Dynamic compressive failure of alon under controlled planar confinement.” J. Am. Ceram. Soc. 91 (11): 3619–3629. https://doi.org/10.1111/j.1551-2916.2008.02712.x.
Pierron, F., and M. Grédiac. 2012. The virtual fields method: Extracting constitutive mechanical parameters from full-field deformation measurements, 3–19. New York: Springer.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Ranjith, P. G., J. Zhao, M. Ju, R. V. S. De Silva, T. D. Rathnaweera, and A. K. M. S. Bandara. 2017. “Opportunities and challenges in deep mining: A brief review.” Engineering 3 (4): 546–551. https://doi.org/10.1016/J.ENG.2017.04.024.
Scholtès, L., and F. V. Donzé. 2013. “A DEM model for soft and hard rocks: Role of grain interlocking on strength.” J. Mech. Phys. Solids 61 (2): 352–369. https://doi.org/10.1016/j.jmps.2012.10.005.
Weatherley, D., V. Boros, and W. Hancock. 2011. ESyS-particle tutorial and user’s guide version 2.1. Brisbane, Australia: Earth Systems Science Computational Centre, Univ. of Queensland.
Weng, L., X. Li, X. Shang, and X. Xie. 2018. “Fracturing behavior and failure in hollowed granite rock with static compression and coupled static-dynamic loads.” Int. J. Geomech. 18 (6): 04018045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001132.
Xu, Y., and F. Dai. 2018. “Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments.” Rock Mech. Rock Eng. 51 (3): 747–764. https://doi.org/10.1007/s00603-017-1364-2.
Xu, Y., F. Dai, and H. Du. 2020. “Experimental and numerical studies on compression-shear behaviors of brittle rocks subjected to combined static-dynamic loading.” Int. J. Mech. Sci. 175: 105520. https://doi.org/10.1016/j.ijmecsci.2020.105520.
Zhang, P., Z. Meng, K. Zhang, and S. Jiang. 2020. “Impact of coal ranks and confining pressures on coal strength, permeability, and acoustic emission.” Int. J. Geomech. 20 (8): 04020135. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001752.
Zhang, Q. B., and J. Zhao. 2014. “A review of dynamic experimental techniques and mechanical behaviour of rock materials.” Rock Mech. Rock Eng. 47 (4): 1411–1478. https://doi.org/10.1007/s00603-013-0463-y.
Zhou, L., S. Xu, J. Shan, Y. Liu, and P. Wang. 2018. “Heterogeneity in deformation of granite under dynamic combined compression/shear loading.” Mech. Mater. 123: 1–18. https://doi.org/10.1016/j.mechmat.2018.04.013.
Zhou, Y. X., K. Xia, X. B. Li, H. B. Li, G. W. Ma, J. Zhao, Z. L. Zhou, and F. Dai. 2012. “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.” Int. J. Rock Mech. Min. Sci. 49: 105–112. https://doi.org/10.1016/j.ijrmms.2011.10.004.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 11November 2021

History

Received: Nov 1, 2020
Accepted: Jul 15, 2021
Published online: Aug 31, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 31, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Former Ph.D. Candidate, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan Univ., Chengdu, Sichuan 610065, China; Postdoctoral Research Associate, Dept. of Engineering Science, Univ. of Oxford, Oxford OX1 3PJ, UK. Email: [email protected]
Antonio Pellegrino [email protected]
Lecturer, Dept. of Engineering Science, Univ. of Oxford, Oxford OX1 3PJ, UK. Email: [email protected]
Professor, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan Univ., Chengdu, Sichuan 610065, China (corresponding author). Email: [email protected]
Lecturer, National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong Univ., Chongqing 400074, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Computational finite element modeling of stress-state- and strain-rate-dependent failure behavior of ceramics with experimental validation, Ceramics International, 10.1016/j.ceramint.2022.12.268, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share