Technical Papers
Aug 9, 2021

Numerical Investigation of Coupled Effects of Temperature and Confining Pressure on Rock Mechanical Properties in Fractured Rock Mass Using Thermal-Stress-Aperture Coupled Model

Publication: International Journal of Geomechanics
Volume 21, Issue 10

Abstract

The mechanical performance of rock mass subjected to the coupled influences of the elevated temperature and in situ stresses has always been a hot topic in underground rock engineering projects. In this study, a thermal-stress-aperture coupled model was first developed and then incorporated into the particle flow code for the coupled thermomechanical analyses in the fractured rock mass. With thorough considerations of the aperture-dependent thermal and mesomechanical parameters for the fractured rock, the model performed more realistic thermoelastic responses of the fractured rock to the temperatures and confining pressures. Comparative studies between the numerical simulations and previous experimental results indicated that the proposed model was suitable for modeling the thermomechanical behaviors of the fractured rock. Then, a series of numerical compression simulations with heating temperatures of 20°C–600°C and confining pressures of 0–20 MPa were conducted to comprehensively explore the interplay of the temperature and confining pressure on mechanical properties of fractured rock specimens. Finally, the mechanisms that affect the rock thermomechanical properties were further revealed. The results indicated that the compressive strength and elastic modulus increase with an increase in confining pressure for each temperature scenario. The thermal strengthening behavior of rock extrapolated to about 400°C takes place in confined compression tests and is more pronounced at higher confining pressures. The evolutions of thermal properties, microcracks, and mesostructures are the most decisive factors that could induce the variations of rock properties under the coupled temperature and confining pressure treatment. For analyzing the mechanisms behind strengthening and weakening contribution to rock properties, the positive effect of the decrease in average fracture aperture, the dual effects of increased porosity and thermal-induced microcracks, and the negative effect of stress-induced microcracks should be comprehensively considered.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (42077246, 41772309, and 52004182), the National Key Research and Development Program of China (2017YFC1501302), and the Outstanding Youth Foundation of Hubei Province, China (No. 2019CFA074). The authors are grateful for this financial support.

References

Baghbanan, A., and L. Jing. 2008. “Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture.” Int. J. Rock Mech. Min. Sci. 45 (8): 1320–1334. https://doi.org/10.1016/j.ijrmms.2008.01.015.
Balme, M. R., V. Rocchi, C. Jones, P. R. Sammonds, P. G. Meredith, and S. Boon. 2004. “Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell.” J. Volcanol. Geotherm. Res. 132 (2–3): 159–172. https://doi.org/10.1016/S0377-0273(03)00343-3.
Barton, N. 2020. “A review of mechanical over-closure and thermal over-closure of rock joints: Potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development.” Tunnelling Underground Space Technol. 99: 103379. https://doi.org/10.1016/j.tust.2020.103379.
Benabou, L., Z. Sun, and P. R. Dahoo. 2013. “A thermo-mechanical cohesive zone model for solder joint lifetime prediction.” Int. J. Fatigue 49: 18–30. https://doi.org/10.1016/j.ijfatigue.2012.12.008.
Bouhala, L., A. Makradi, and S. Belouettar. 2012. “Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method.” Eng. Fract. Mech. 88: 35–48. https://doi.org/10.1016/j.engfracmech.2012.04.001.
Chen, S., C. Yang, and G. Wang. 2017. “Evolution of thermal damage and permeability of Beishan granite.” Appl. Therm. Eng. 110: 1533–1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075.
Chen, Y. L., J. Ni, W. Shao, and R. Azzam. 2012. “Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading.” Int. J. Rock Mech. Min. Sci. 56: 62–66. https://doi.org/10.1016/j.ijrmms.2012.07.026.
Cheng, Y., and L. N. Y. Wong. 2018. “Microscopic characterization of tensile and shear fracturing in progressive failure in marble.” J. Geophys. Res.: Solid Earth 123 (1): 204–225. https://doi.org/10.1002/2017JB014581.
Chiu, T.-C., S.-W. Tsai, and C.-H. Chue. 2013. “Heat conduction in a functionally graded medium with an arbitrarily oriented crack.” Int. J. Heat Mass Transfer 67: 514–522. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.022.
Chu, Z. F., Z. J. Wu, Q. S. Liu, B. G. Liu, and J. L. Sun. 2021. “Analytical solution for lined circular tunnels in deep viscoelastic burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners.” J. Eng. Mech. 147: 04021009. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001912.
Dai, F., B. Li, N. W. Xu, and Y. G. Zhu. 2017. “Microseismic early warning of surrounding rock mass deformation in the underground powerhouse of the Houziyan hydropower station, China.” Tunnelling Underground Space Technol. 62: 64–74. https://doi.org/10.1016/j.tust.2016.11.009.
Dai, F., K. Xia, and M. H. B. Nasseri. 2013. “Micromechanical model for the rate dependence of the fracture toughness anisotropy of Barre granite.” Int. J. Rock Mech. Min. Sci. 63: 113–121. https://doi.org/10.1016/j.ijrmms.2013.08.011.
Dai, F., Y. Xu, T. Zhao, N. W. Xu, and Y. Liu. 2016. “Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests.” Int. J. Rock Mech. Min. Sci. 88: 49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
Fan, L. F., J. W. Gao, X. L. Du, and Z. J. Wu. 2020. “Spatial gradient distributions of thermal shock-induced damage to granite.” J. Rock Mech. Geotech. Eng. 12 (5): 917–926. https://doi.org/10.1016/j.jrmge.2020.05.004.
Fereidooni, D., G. R. Khanlari, M. Heidari, A. A. Sepahigero, and A. P. Kolahi-Azar. 2015. “Assessment of inherent anisotropy and confining pressure influences on mechanical behavior of anisotropic foliated rocks under triaxial compression.” Rock Mech. Rock Eng. 49 (6): 2155–2163. https://doi.org/10.1007/s00603-015-0814-y.
Gao, X. W., B. J. Zheng, K. Yang, and C. Zhang. 2015. “Radial integration BEM for dynamic coupled thermoelastic analysis under thermal shock loading.” Comput. Struct. 158: 140–147. https://doi.org/10.1016/j.compstruc.2015.06.006.
Gautam, P. K., A. K. Verma, M. K. Jha, P. Sharma, and T. N. Singh. 2018. “Effect of high temperature on physical and mechanical properties of Jalore granite.” J. Appl. Geophys. 159: 460–474. https://doi.org/10.1016/j.jappgeo.2018.07.018.
Graf, V., M. Jamek, A. Rohatsch, and E. Tschegg. 2013. “Effects of thermal-heating cycle treatment on thermal expansion behavior of different building stones.” Int. J. Rock Mech. Min. Sci. 64: 228–235. https://doi.org/10.1016/j.ijrmms.2013.08.007.
Gu, S. T., E. Monteiro, and Q. C. He. 2011. “Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites.” Compos. Sci. Technol. 71 (9): 1209–1216. https://doi.org/10.1016/j.compscitech.2011.04.001.
He, J., Q. S. Liu, Z. J. Wu, and Y. L. Jiang. 2018. “Geothermal-related thermo-elastic fracture analysis by numerical manifold method.” Energies 11 (6): 1380. https://doi.org/10.3390/en11061380.
Hu, M. S., and J. Rutqvist. 2020. “Microscale mechanical modeling of deformable geomaterials with dynamic contacts based on the numerical manifold method.” Comput. Geosci. 24 (5): 1783–1797. https://doi.org/10.1007/s10596-020-09992-z.
Hu, W. R., C. Kwok, K. Duan, and T. Wang. 2018. “Parametric study of the smooth-joint contact model on the mechanical behavior of jointed rock.” Int. J. Numer. Anal. Methods Geomech. 42 (2): 358–376. https://doi.org/10.1002/nag.2751.
Huang, K., and A. Ghassemi. 2016. “Modeling 3D thermal fracture propagation by transient cooling using virtual multidimensional internal bonds.” Int. J. Numer. Anal. Methods Geomech. 40 (17): 2293–2311. https://doi.org/10.1002/nag.2526.
Huang, X. H., C. M. Wang, T. Z. Wang, and Z. M. Zhang. 2015. “Quantification of geological strength index based on discontinuity volume density of rock masses.” Int. J. Heat Technol. 33 (4): 255–261. https://doi.org/10.18280/ijht.330434.
Huang, Y.-H., S.-Q. Yang, and W.-L. Tian. 2019. “Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures.” Theor. Appl. Fract. Mech. 99: 118–130. https://doi.org/10.1016/j.tafmec.2018.11.013.
Itasca Consulting Group Inc. 2013. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 5.01. Minneapolis, MI: ICG.
Jiao, Y. Y., G. H. Huang, Z. Y. Zhao, F. Zheng, and L. Wang. 2015a. “An improved three-dimensional spherical DDA model for simulating rock failure.” Sci. China Technol. Sci. 58 (9): 1533–1541. https://doi.org/10.1007/s11431-015-5898-9.
Jiao, Y. Y., X. L. Zhang, H. Q. Zhang, H. B. Li, S. Q. Yang, and J. C. Li. 2015b. “A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses.” Comput. Geotech. 67: 142–149. https://doi.org/10.1016/j.compgeo.2015.03.009.
Kong, P., L. S. Jiang, J. M. Shu, A. Sainoki, and Q. B. Wang. 2019. “Effect of fracture heterogeneity on rock mass stability in a highly heterogeneous underground roadway.” Rock Mech. Rock Eng. 52 (11): 4547–4564. https://doi.org/10.1007/s00603-019-01887-5.
Kumari, W. G. P., P. G. Ranjith, M. S. A. Perera, S. Shao, B. K. Chen, A. Lashin, N. Al Arifi, and T. D. Rathnaweera. 2017. “Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction.” Geothermics 65: 44–59. https://doi.org/10.1016/j.geothermics.2016.07.002.
Lan, H., C. D. Martin, and J. C. Andersson. 2012. “Evolution of in situ rock mass damage induced by mechanical–thermal loading.” Rock Mech. Rock Eng. 46 (1): 153–168. https://doi.org/10.1007/s00603-012-0248-8.
Liu, S., and J. Y. Xu. 2014. “Mechanical properties of Qinling biotite granite after high temperature treatment.” Int. J. Rock Mech. Min. Sci. 71: 188–193. https://doi.org/10.1016/j.ijrmms.2014.07.008.
Mahabadi, O. K., A. Lisjak, A. Munjiza, and G. Grasselli. 2012. “Y-Geo: New combined finite-discrete element numerical code for geomechanical applications.” Int. J. Geomech. 12 (6): 676–688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216.
Mas Ivars, D., M. E. Pierce, C. Darcel, J. Reyes-Montes, D. O. Potyondy, R. Paul Young, and P. A. Cundall. 2011. “The synthetic rock mass approach for jointed rock mass modelling.” Int. J. Rock Mech. Min. Sci. 48 (2): 219–244. https://doi.org/10.1016/j.ijrmms.2010.11.014.
Mi, L. D., H. Q. Jiang, J. J. Li, T. Li, and Y. Tian. 2014. “The investigation of fracture aperture effect on shale gas transport using discrete fracture model.” J. Nat. Gas Sci. Eng. 21: 631–635. https://doi.org/10.1016/j.jngse.2014.09.029.
Nasseri, M. H. B., A. Schubnel, and R. P. Young. 2007. “Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite.” Int. J. Rock Mech. Min. Sci. 44 (4): 601–616. https://doi.org/10.1016/j.ijrmms.2006.09.008.
Ngo, D. T., and F. L. Pellet. 2018. “Numerical modeling of thermally-induced fractures in a large rock salt mass.” J. Rock Mech. Geotech. Eng. 10 (5): 844–855. https://doi.org/10.1016/j.jrmge.2018.04.008.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Raisianzadeh, J., S. Mohammadi, and A. A. Mirghasemi. 2019. “Micromechanical study of particle breakage in 2D angular rockfill media using combined DEM and XFEM.” Granular Matter 21 (3): 48. https://doi.org/10.1007/s10035-019-0904-8.
Sagong, M., D. Park, J. Yoo, and J. S. Lee. 2011. “Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression.” Int. J. Rock Mech. Min. Sci. 48 (7): 1055–1067. https://doi.org/10.1016/j.ijrmms.2011.09.001.
Saksala, T., M. Hokka, and V. T. Kuokkala. 2017. “Numerical 3D modeling of the effects of strain rate and confining pressure on the compressive behavior of Kuru granite.” Comput. Geotech. 88: 1–8. https://doi.org/10.1016/j.compgeo.2017.03.004.
Shao, S. S., P. G. Ranjith, P. L. P. Wasantha, and B. K. Chen. 2015. “Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy.” Geothermics 54: 96–108. https://doi.org/10.1016/j.geothermics.2014.11.005.
Sirdesai, N. N., T. N. Singh, P. G. Ranjith, and R. Singh. 2016. “Effect of varied durations of thermal treatment on the tensile strength of red sandstone.” Rock Mech. Rock Eng. 50 (1): 205–213. https://doi.org/10.1007/s00603-016-1047-4.
Slatlem Vik, H., S. Salimzadeh, and H. M. Nick. 2018. “Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions.” Renewable Energy 121: 606–622. https://doi.org/10.1016/j.renene.2018.01.039.
Sun, Q., W. Q. Zhang, Y. M. Zhu, and Z. Huang. 2019. “Effect of high temperatures on the thermal properties of granite.” Rock Mech. Rock Eng. 52 (8): 2691–2699. https://doi.org/10.1007/s00603-019-1733-0.
Tang, Z. C., and Y. B. Zhang. 2020. “Temperature-dependent peak shear-strength criterion for granite fractures.” Eng. Geol. 269: 105552. https://doi.org/10.1016/j.enggeo.2020.105552.
Tian, W. L., S. Q. Yang, Y. H. Huang, and B. Hu. 2020. “Mechanical behavior of granite with different grain sizes after high-temperature treatment by particle flow simulation.” Rock Mech. Rock Eng. 53 (4): 1791–1807. https://doi.org/10.1007/s00603-019-02005-1.
Ubero-Martinez, I., L. Rodriguez-Tembleque, J. Cifuentes-Rodriguez, and J. Vallepuga-Espinosa. 2020. “Nonlinear interface thermal conditions in three-dimensional thermoelastic contact problems.” Comput. Struct. 241: 106354. https://doi.org/10.1016/j.compstruc.2020.106354.
Wanne, T. S., and R. P. Young. 2008. “Bonded-particle modeling of thermally fractured granite.” Int. J. Rock Mech. Min. Sci. 45 (5): 789–799. https://doi.org/10.1016/j.ijrmms.2007.09.004.
Wei, S. J., Y. S. Yang, C. D. Su, S. R. Cardosh, and H. Wang. 2019. “Experimental study of the effect of high temperature on the mechanical properties of coarse sandstone.” Appl. Sci. 9 (12): 2424. https://doi.org/10.3390/app9122424.
Weng, L., Z. J. Wu, and Q. S. Liu. 2019a. “Numerical analysis of degradation characteristics for heterogeneous rock under coupled thermomechanical conditions.” Int. J. Geomech. 19 (10): 04019111. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001492.
Weng, L., Z. J. Wu, and Q. S. Liu. 2019b. “Influence of heating/cooling cycles on the micro/macrocracking characteristics of Rucheng granite under unconfined compression.” Bull. Eng. Geol. Environ. 79 (3): 1289–1309. https://doi.org/10.1007/s10064-019-01638-4.
Weng, L., Z. J. Wu, Q. S. Liu, and Z. Y. Wang. 2019c. “Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures.” Eng. Fract. Mech. 220: 106659. https://doi.org/10.1016/j.engfracmech.2019.106659.
Weng, L., Z. J. Wu, and Q. S. Liu. 2020. “Dynamic mechanical properties of dry and water-saturated siltstones under sub-zero temperatures.” Rock. Mech. Rock. Eng. 53: 4381–4401. https://doi.org/10.1007/s00603-019-02039-5.
Wong, L. N. Y., and Q. Q. Xiong. 2018. “A method for multiscale interpretation of fracture processes in Carrara marble specimen containing a single flaw under uniaxial compression.” J. Geophys. Res.-Solid Earth 123 (8): 6459–6490. https://doi.org/10.1029/2018JB015447.
Wong, L. N. Y., and Y. Zhang. 2019. “Numerical investigation of micromechanisms of thermal strengthening in rock.” In Proc., 53rd U.S. Rock Mechanics/Geomechanics Symp., ARMA-2019-0305. New York: American Rock Mechanics Association.
Wong, L. N. Y., Y. H. Zhang, and Z. J. Wu. 2020. “Rock strengthening or weakening upon heating in the mild temperature range?” Eng. Geol. 272: 105619. https://doi.org/10.1016/j.enggeo.2020.105619.
Wu, H., N. Gui, X. T. Yang, J. Y. Tu, and S. Y. Jiang. 2020a. “Analysis of clumped-pebble shape on thermal radiation and conduction in nuclear beds by subcell radiation model.” J. Heat Trans.-Trans. Asme 142 (3): 032101. https://doi.org/10.1115/1.4045685.
Wu, Q. H., L. Weng, Y. L. Zhao, B. H. Guo, and T. Luo. 2019a. “On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates.” Eng. Geol. 253: 94–110. https://doi.org/10.1016/j.enggeo.2019.03.014.
Wu, Z. J., M. Y. Li, and L. Weng. 2020b. “Thermal-stress-aperture coupled model for analyzing the thermal failure of fractured rock mass.” Int. J. Geomech. 20 (10): 04020176. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001809.
Wu, Z. J., Y. Zhou, and L. Fan. 2019b. “A fracture aperture dependent thermal-cohesive coupled model for modelling thermal conduction in fractured rock mass.” Comput. Geotech. 114: 103108. https://doi.org/10.1016/j.compgeo.2019.103108.
Wu, Z. J., Y. Zhou, L. Weng, Q. S. Liu, and Y. Xiao. 2020c. “Investigation of thermal-induced damage in fractured rock mass by coupled FEM–DEM method.” Comput. Geosci. 24 (5): 1833–1843. https://doi.org/10.1007/s10596-020-09970-5.
Xiong, L. X., H. J. Chen, T. B. Li, and Y. Zhang. 2018. “Experimental study on the uniaxial compressive strength of artificial jointed rock mass specimen after high temperatures.” Geomech. Geophys. Geo-Energy Geo-Resour. 4 (3): 201–213. https://doi.org/10.1007/s40948-018-0085-7.
Xu, T., G. L. Zhou, M. J. Heap, W. C. Zhu, C. F. Chen, and P. Baud. 2017. “The influence of temperature on time-dependent deformation and failure in granite: A mesoscale modeling approach.” Rock Mech. Rock Eng. 50 (9): 2345–2364. https://doi.org/10.1007/s00603-017-1228-9.
Yang, S. Q., W. L. Tian, D. Elsworth, J. G. Wang, and L. F. Fan. 2020. “An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression.” Rock Mech. Rock Eng. 53 (10): 4403–4427. https://doi.org/10.1007/s00603-019-01982-7.
Yang, S. Q., W. L. Tian, and Y. H. Huang. 2018. “Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code.” Geothermics 72: 124–137. https://doi.org/10.1016/j.geothermics.2017.10.018.
Yang, S. Q., P. Xu, Y. B. Li, and Y. H. Huang. 2017. “Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments.” Geothermics 69: 93–109. https://doi.org/10.1016/j.geothermics.2017.04.009.
Yin, Q., R. C. Liu, H. W. Jing, H. J. Su, L. Y. Yu, and L. X. He. 2019. “Experimental study of nonlinear flow behaviors through fractured rock samples after high-temperature exposure.” Rock Mech. Rock Eng. 52 (9): 2963–2983. https://doi.org/10.1007/s00603-019-1741-0.
Yin, T. B., R. H. Shu, X. B. Li, P. Wang, and X. L. Liu. 2016. “Comparison of mechanical properties in high temperature and thermal treatment granite.” Trans. Nonferrous Met. Soc. China 26 (7): 1926–1937. https://doi.org/10.1016/S1003-6326(16)64311-X.
Yin, T. B., S. S. Zhang, X. B. Li, and L. Bai. 2018. “A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature.” Eng. Fract. Mech. 204: 87–102. https://doi.org/10.1016/j.engfracmech.2018.09.034.
Yu, J., G. Y. Liu, Y. Y. Cai, J. F. Zhou, S. Y. Liu, and B. X. Tu. 2020a. “Time-dependent deformation mechanism for swelling soft-rock tunnels in coal mines and its mathematical deduction.” Int. J. Geomech. 20 (3): 04019186. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001594.
Yu, J., W. Yao, K. Duan, X. Y. Liu, and Y. L. Zhu. 2020b. “Experimental study and discrete element method modeling of compression and permeability behaviors of weakly anisotropic sandstones.” Int. J. Rock Mech. Min. Sci. 134: 104437. https://doi.org/10.1016/j.ijrmms.2020.104437.
Zareidarmiyan, A., H. Salarirad, V. Vilarrasa, K. I. Kim, J. Lee, and K. B. Min. 2020. “Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media.” J. Rock Mech. Geotech. Eng. 12 (4): 850–865. https://doi.org/10.1016/j.jrmge.2019.12.016.
Zhang, Q., H.-H. Zhu, and L. Zhang. 2015. “Studying the effect of non-spherical micro-particles on Hoek–Brown strength parameter mi using numerical true triaxial compressive tests.” Int. J. Numer. Anal. Methods Geomech. 39 (1): 96–114. https://doi.org/10.1002/nag.2310.
Zhang, W., Q. Sun, and Y. Zhang. 2019. “Effects of pre-existing cracks and temperature on failure mode of granite from Eastern China.” J. Struct. Geol. 126: 330–337. https://doi.org/10.1016/j.jsg.2019.06.018.
Zhang, X.-P., and L. N. Y. Wong. 2013. “Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression.” Int. J. Fract. 180 (1): 93–110. https://doi.org/10.1007/s10704-012-9803-2.
Zhao, Z. 2015. “Thermal influence on mechanical properties of granite: A microcracking perspective.” Rock Mech. Rock Eng. 49 (3): 747–762. https://doi.org/10.1007/s00603-015-0767-1.
Zhao, Z. H., Z. H. Dou, H. R. Xu, and Z. N. Liu. 2019. “Shear behavior of Beishan granite fractures after thermal treatment.” Eng. Fract. Mech. 213: 223–240. https://doi.org/10.1016/j.engfracmech.2019.04.012.
Zhou, X. P., J. Bi, and Q. H. Qian. 2014. “Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws.” Rock Mech. Rock Eng. 48 (3): 1097–1114. https://doi.org/10.1007/s00603-014-0627-4.
Zhou, X. P., G. Q. Li, and H. C. Ma. 2020a. “Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three pre-existing fissures.” Eng. Fract. Mech. 224: 106797. https://doi.org/10.1016/j.engfracmech.2019.106797.
Zhou, X. P., L. F. Wang, and Y. D. Shou. 2020b. “Understanding the fracture mechanism of ring Brazilian disc specimens by the phase field method.” Int. J. Fract. 226 (1): 17–43. https://doi.org/10.1007/s10704-020-00476-w.
Zhou, Y., Z. J. Wu, L. Weng, and Q. S. Liu. 2021. “Seepage characteristics of chemical grout flow in porous sandstone with a fracture under different temperature conditions: An NMR based experimental investigation.” Int. J. Rock. Mech. Min. 142: 104764. https://doi.org/10.1016/j.ijrmms.2021.104764.
Zuo, J.-P., X.-S. Wang, D.-Q. Mao, C.-L. Wang, and G.-h. Jiang. 2016. “T–M coupled effects on cracking behaviors and reliability analysis of double-notched crustal rocks.” Eng. Fract. Mech. 158: 106–115. https://doi.org/10.1016/j.engfracmech.2015.11.001.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 10October 2021

History

Received: Jan 15, 2021
Accepted: Jun 4, 2021
Published online: Aug 9, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). ORCID: https://orcid.org/0000-0001-7475-660X. Email: [email protected]
Lei Weng, Ph.D. [email protected]
School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Professor, School of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China. ORCID: https://orcid.org/0000-0002-7616-2685. Email: [email protected]
Quansheng Liu [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Modeling Geothermal Heat Extraction-Induced Potential Fault Activation by Developing an FDEM-Based THM Coupling Scheme, Rock Mechanics and Rock Engineering, 10.1007/s00603-023-03218-1, (2023).
  • Rock-cutting and wear performance of a novel TBM disc cutter with spiral grooves, Tunnelling and Underground Space Technology, 10.1016/j.tust.2022.104660, 129, (104660), (2022).
  • Evaluating the pore characteristics of granite in disposal system under thermo-hydro-mechanical (T-H-M) coupling, International Journal of Rock Mechanics and Mining Sciences, 10.1016/j.ijrmms.2022.105237, 160, (105237), (2022).
  • A 2D FDEM-based THM coupling scheme for modeling deformation and fracturing of the rock mass under THM effects, Computers and Geotechnics, 10.1016/j.compgeo.2022.105019, 152, (105019), (2022).
  • Quantitative relationships between the mineral composition and macro mechanical behaviors of granite under different temperatures: Insights from mesostructure-based DEM investigations, Computers and Geotechnics, 10.1016/j.compgeo.2022.104838, 148, (104838), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share