Technical Papers
Aug 26, 2021

Treatment and Recovery of Clay Soils Using Geopolymerization Method

Publication: International Journal of Geomechanics
Volume 21, Issue 11

Abstract

This paper focuses on the effectiveness in the improvement of clay soils of using geopolymers of fly ash (FA), metakaolin (MK), or blast furnace slag, activated by an alkaline solution of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), or a mixture of both. The unconfined compressive strength (UCS) of samples cured for 1, 7, and 28 days was determined, and X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy were performed to record the mechanical, chemical, and mineralogical behaviors of the stabilized soils. The results showed an increase from 149.72 kPa (untreated clay) to 460.06 kPa for the clay soil treated with NaOH after 1 day of hardening. The highest UCS was obtained using a MK-based geopolymer (MKG) at 28 days. Oedometric testing showed a reduction in the swelling potential of the clay soil and a decrease in the swelling pressure from 600 to 300 kPa. It was found that all the tested treatments significantly improved the geotechnical properties of the clay soil. However, the MKG treatment was most effective in terms of increased resistance, while the FA-based geopolymer (FAG) provided better results in terms of reducing swelling.

Get full access to this article

View all available purchase options and get full access to this article.

References

Al-Rawas, A. A., R. Taha, J. D. Nelson, T. B. Al-Shab, and H. Al-Siyabi. 2002. “A comparative evaluation of various additives used in the stabilization of expansive soils.” Geotech. Test. J. 25 (2): 199–209. https://doi.org/10.1520/GTJ11363J.
ASTM. 2013. Standard test methods for identification and classification of dispersive clay soils. ASTM D4647. West Conshohocken, PA: ASTM.
Aughenbaugh, K. L., T. Williamson, and M. C. G. Juenger. 2015. “Critical evaluation of strength prediction methods for alkali-activated fly ash.” Mater. Struct. 48 (3): 607–620. https://doi.org/10.1617/s11527-014-0496-z.
Bell, F. G. 1989. “Lime stabilisation of clay soils stabilisation de sols argileux a la chaux.” Bull. Int. Assoc. Eng. Geol. 39: 67–74. https://doi.org/10.1007/BF02592537.
Blanck, G., O. Cuisinier, and F. Masrouri. 2014. “Soil treatment with organic non-traditional additives for the improvement of earthworks.” Acta Geotech. 9 (6): 1111–1122. https://doi.org/10.1007/s11440-013-0251-6.
Bouchenafa, O., R. Hamzaoui, A. Bennabi, and J. Colin. 2019. “PCA effect on structure of fly ashes and slag obtained by mechanosynthesis. Applications: Mechanical performance of substituted paste CEMI + 50% slag/or fly ashes.” Constr. Build. Mater. 203: 120–133. https://doi.org/10.1016/j.conbuildmat.2019.01.063.
Cerato, A. B., and G. A. Miller. 2013. “Determination of soil stabilizer content using X-ray fluorescence.” Geotech. Test. J. 36 (5): 781–785. https://doi.org/10.1520/GTJ20120186.
Chen, L., and D. F. Lin. 2009. “Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.” J. Hazard. Mater. 162 (1): 321–327. https://doi.org/10.1016/j.jhazmat.2008.05.060.
Chen, X., Z. Niu, J. Wang, G. R. Zhu, and M. Zhou. 2018. “Effect of sodium polyacrylate on mechanical properties and microstructure of metakaolin-based geopolymer with different SiO2/Al2O3 ratio.” Ceram. Int. 44 (15): 18173–18180. https://doi.org/10.1016/j.ceramint.2018.07.025.
Cheshomi, A., A. Eshaghi, and J. Hassanpour. 2017. “Effect of lime and fly ash on swelling percentage and Atterberg limits of sulfate-bearing clay.” Appl. Clay Sci. 135: 190–198. https://doi.org/10.1016/j.clay.2016.09.019.
Coudert, E., M. Paris, D. Deneele, G. Russo, and A. Tarantino. 2019. “Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution.” Constr. Build. Mater. 201: 539–552. https://doi.org/10.1016/j.conbuildmat.2018.12.188.
Cristelo, N., S. Glendinning, T. Miranda, D. Oliveira, and R. Silva. 2012. “Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction.” Constr. Build. Mater. 36: 727–735. https://doi.org/10.1016/j.conbuildmat.2012.06.037.
Davidovits, J. 1991. “Geopolymers: Inorganic polymeric new materials.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Davidovits, J. 2015. Geopolymer chemistry and applications. 4th ed. Saint-Quentin, France: Geopolymer Institute.
De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Dungca, J. R., and E. E. T. Codilla, II. 2018. “Fly-ash-based geopolymer as stabilizer for silty sand embankment materials.” Int. J. Geomate 14 (46): 143–149. https://doi.org/10.21660/2018.46.7181.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
El Idrissi, A. C. 2019. “Géopolymérisation et activation alcaline des coulis d’injection: Structuration, micromécanique et résistance aux sollicitations physico-chimiques.” Mater. Today Commun. 14: 225–232. https://doi.org/10.1016/j.mtcomm.2018.01.012.
Farhan, K. Z., M. A. M. Johari, and R. Demirboğa. 2020. “Assessment of important parameters involved in the synthesis of geopolymer composites: A review.” Constr. Build. Mater. 264: 120276. https://doi.org/10.1016/j.conbuildmat.2020.120276.
Fernandez-Jiménez, A., and A. Palomo. 2005. “Composition and microstructure of alkali activated fly ash binder: Effect of the activator.” Cem. Concr. Res. 35 (10): 1984–1992. https://doi.org/10.1016/j.cemconres.2005.03.003.
Ghadir, P., and N. Ranjbar. 2018. “Clayey soil stabilization using geopolymer and Portland cement.” Constr. Build. Mater. 188: 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207.
Hajimohammadi, A., J. L. Provis, and J. S. J. van Deventer. 2011. “Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.” J. Colloid Interface Sci. 357 (2): 384–392. https://doi.org/10.1016/j.jcis.2011.02.045.
Hamzaoui, R., O. Bouchenafa, S. Guessasma, N. Leklou, and A. Bouaziz. 2016. “The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement.” Mater. Des. 90: 29–37. https://doi.org/10.1016/j.matdes.2015.10.109.
Hamzaoui, R., F. Muslim, S. Guessasma, A. Bennabi, and J. Guilline. 2015. “Structural and thermal behavior of proclay kaolinite using high energy ball milling process.” Powder Technol. 271: 228–237. https://doi.org/10.1016/j.powtec.2014.11.018.
Harichane, K., M. Ghrici, S. Kenai, and K. Grine. 2011. “Use of natural pozzolana and lime for stabilization of cohesive soils.” Geotech. Geol. Eng. 29 (5): 759–769. https://doi.org/10.1007/s10706-011-9415-z.
Ibtehaj, T. J., R. T. Mohd, H. M. Zaid, and A. K. Tanveer. 2014. “Soil stabilization using lime: Advantages, disadvantages and proposing a potential alternative.” Res. J. Appl. Sci. Eng. Technol. 8 (4): 510–520. https://doi.org/10.19026/rjaset.8.1000.
Indraratna, B. 1996. “Utilization of lime, slag and fly ash for improvement of a colluvial soil in New South Wales, Australia.” Geotech. Geol. Eng. 14 (3): 169–191. https://doi.org/10.1007/BF00452946.
Khoury, N., and C. Khoury. 2005. New laboratory methods for characterization of compaction in fine-grained soils. Internal Rep. Norman, OK: School of Civil Engineering and Environmental Science, Univ. of Oklahoma.
Latifi, N., C. L. Meehan, M. Z. A. Majid, and S. Horpibulsuk. 2016. “Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study.” Appl. Clay Sci. 132–133: 182–193. https://doi.org/10.1016/j.clay.2016.06.004.
Latifi, N., A. S. A. Rashid, S. Siddiqua, and S. Horpibulsuk. 2015. “Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution—A green soil stabilizer.” Appl. Clay Sci. 118: 195–206. https://doi.org/10.1016/j.clay.2015.10.001.
Lemee, F. 2006. “Traitement par alcali-activation de sédiments fins marins, non contaminés et à faible teneur en eau: Mise au point d’un procédé de stabilisation.” Ph.D. thesis, Dept. of Civil Engineering, Université de CAEN.
Liu, Z., C. S. Cai, F. Liu, and F. Fan. 2016. “Feasibility study of loess stabilization with fly ash–based geopolymer.” J. Mater. Civ. Eng. 28 (5): 04016003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001490.
Mahrous, M. A., B. Šegvi, G. Zanoni, S. D. Khadka, S. Senadheera, and P. W. Jayawickrama. 2018. “The role of clay swelling and mineral neoformation in the stabilization of high plasticity soils treated with the fly ash- and Metakaolin-based geopolymers.” Minerals 8 (4): 146. https://doi.org/10.3390/min8040146.
Malhotra, V. M., and P. K. Mehta. 2017. Pozzolanic and cementitious materials. 1st ed. London: CRC Press.
Miranda, T., D. Leitão, J. Oliveira, M. Corrêa-Silva, N. Araújo, J. Coelho, A. Fernández-Jiménez, and N. Cristelo. 2020. “Application of alkali-activated industrial wastes for the stabilisation of a full-scale (sub)base layer.” J. Cleaner Prod. 242: 118427. https://doi.org/10.1016/j.jclepro.2019.118427.
Monsif, M., S. Rossignol, F. Allali, A. Zerouale, N. Idrissi Kandri, E. Joussein, S. Tamburini, and R. Bertani. 2017. “The implementation of geopolymers materials from Moroccan clay, within the framework of the valorization of the local natural resources.” J. Mater. Environ. Sci. 8: 2704–2721.
Norme ISO. 1986. ”Produits chimiques à usage industriel — Techniques de l'échantillonnage — Produits chimiques solides de petite granulométrie et agglomérats grossiers.” Norme ISO 8213. Geneva, Switzerland: ISO.
NF P 11-300. 1992. ”Classification des matériaux utilisables dans la construction des remblais et des couches de forme d'infrastructures routières.” Paris, France: Association Francaise de Normalisation (AFNOR).
Phummiphan, I., S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, and S. Shen. 2016. “Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer.” Road Mater. Pavement Des. 17 (4): 877–891. https://doi.org/10.1080/14680629.2015.113263.
Provis, J. L. 2018. “Alkali-activation of calcined clays — Past, present and future.” In Calcined clays for sustainable concrete, edited by F. Martirena, A. Favier, and K. Scrivener, 372–376. New York: Springer. https://doi.org/10.1007/978-94-024-1207-9_60.
Provis, J. L., A. Hajimohammadi, C. E. White, S. A. Bernal, R. J. Myers, R. P. Winarski, V. Rose, T. E. Proffen, A. Llobet, and J. S. J. van Deventer. 2012. “Nanostructural characterization of geopolymers by advanced beamline techniques.” Cem. Concr. Compos. 36: 56–64. https://doi.org/10.1016/j.cemconcomp.2012.07.003.
Provis, J. L., and J. S. J. van Deventer. 2007. “Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry.” Chem. Eng. Sci. 62 (9): 2309–2317. https://doi.org/10.1016/j.ces.2007.01.027.
Prud’homme, E., P. Michaud, E. Joussein, C. Peyratout, A. Smith, and S. Rossignol. 2011. “In situ inorganic foams prepared from various clays at low temperature.” Appl. Clay Sci. 51 (1–2): 15–22. https://doi.org/10.1016/j.clay.2010.10.016.
Saussaye, L., H. Hamdoun, L. Leleyter, E. van Veenc, J. Coggan, G. Rollinson, W. Maherzi, M. Boutouil, and F. Baraud. 2016. “Trace element mobility in a polluted marine sediment after stabilisation with hydraulic binders.” Mar. Pollut. Bull. 110 (1): 401–408. https://doi.org/10.1016/j.marpolbul.2016.06.035.
Sridharan, A., and Y. Gurtug. 2004. “Swelling behaviour of compacted fine-grained soils.” Eng. Geol. 72 (1–2): 9–18. https://doi.org/10.1016/S0013-7952(03)00161-3.
Taki, K., S. Mukherjee, A. K. Patel, and M. Kumar. 2020. “Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization.” Environ. Nanotechnol. Monit. Manage. 14: 100345. https://doi.org/10.1016/j.enmm.2020.100345.
Timakul, P., K. Thanaphatwetphisi, and P. Aungkavattana. 2015. “Effect of silica to alumina ratio on the compressive strength of class C fly ash-based geopolymers.” Key Eng. Mater. 659: 80–84. https://doi.org/10.4028/www.scientific.net/KEM.659.80.
Van Jaarsveld, J. G. S., J. S. J. Van Deventer, and L. Lorenzen. 1998. “Factors affecting the immobilization of metals in geopolymerized flyash.” Metall. Mater. Trans. B 29 (1): 283–291. https://doi.org/10.1007/s11663-998-0032-z.
Wang, D., J. Zhu, and F. He. 2019. “Quantification and micro-mechanisms of CO2 sequestration in magnesia-lime-fly ash/slag solidified soils.” Int. J. Greenhouse Gas Control 91: 102827. https://doi.org/10.1016/j.ijggc.2019.102827.
Wang, Y., F. Han, and J. Mu. 2018. “Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers.” Constr. Build. Mater. 160: 818–827. https://doi.org/10.1016/j.conbuildmat.2017.12.006.
Winterkorn, H. F., and S. Pamukcu. 1991. Soil stabilization and grouting. Foundation engineering handbook. New York: Van Nostrand Reinhold.
Yang, S. L., J. Liu, L. Xu, M. Zhang, and D. S. Jeng. 2020. “A new approach to explore the surface profile of clay soil using white light interferometry.” Sensors 20 (11): 3009. https://doi.org/10.3390/s20113009.
Yong, R. N., and V. R. Ouhadi. 2007. “Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils.” Appl. Clay Sci. 35 (3–4): 238–249. https://doi.org/10.1016/j.clay.2006.08.009.
Zemouli, S., and N. Chelghoum. 2018. “Use of ground granulated blast furnace slag in soil stabilization.” Rev. Sci. Technol. 36: 103–114.
Zhang, M., H. Guo, T. El-Korchi, G. Zhang, and M. Tao. 2013. “Experimental feasibility study of geopolymer as the next-generation soil stabilizer.” Constr. Build. Mater. 47: 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017.
Zhang, M., M. Zhao, G. Zhang, P. Nowak, A. Coen, and M. Tao. 2015. “Calcium-free geopolymer as a stabilizer for sulfate-rich soils.” Appl. Clay Sci. 108: 199–207. https://doi.org/10.1016/j.clay.2015.02.029.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 11November 2021

History

Received: Jun 16, 2020
Accepted: May 17, 2021
Published online: Aug 26, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Baba Hassane Ahmed Hisseini [email protected]
Ph.D. Student, Ecole Spéciale des Travaux Publics/Institut de Recherche en Constructibilité ESTP/IRC, 28 avenue du président Wilson, Cachan 94234, France (corresponding author). Email: [email protected]
Abdelkrim Bennabi [email protected]
Associate Professor, Ecole Spéciale des Travaux Publics/Institut de Recherche en Constructibilité ESTP/IRC, 28 avenue du président Wilson, Cachan 94234, France. Email: [email protected]
Rabah Hamzaoui, M.ASCE [email protected]
Professor, Ecole Spéciale des Travaux Publics/Institut de Recherche en Constructibilité ESTP/IRC, 28 avenue du président Wilson, Cachan 94234, France. Email: [email protected]
Lamis Makki [email protected]
Researcher, CEREMA/DTerNP/TEER/OGSD, 42 bis rue Marais, 59482 Haubourdin, Lille, France. Email: [email protected]
Gaëtan Blanck [email protected]
Doctor, Bouygues Construction, 1 rue Guynemer, 78114 Magny-les-Hameaux, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Natural Clay Minerals as Potential Arsenic Sorbents from Contaminated Groundwater: Equilibrium and Kinetic Studies, International Journal of Environmental Research and Public Health, 10.3390/ijerph192316292, 19, 23, (16292), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share