Technical Papers
Jun 18, 2021

Modeling Effects of Moisture on Particle Breakage

Publication: International Journal of Geomechanics
Volume 21, Issue 9

Abstract

The recently developed framework for modeling grain breakage in granular materials is shown to be valid for saturated/unsaturated conditions. The model describes the initiation, development, and stabilization of breakage using three parameters, all depending on the strength of a representative particle size. When water is introduced, the strength of the soil's particles is expected to weaken, which leads to increased breakage intensities. The model is able to predict the early onset of crushing and the increase in particle breakage rate, both considered characteristic behaviors of a crushable granular medium in wet conditions. Initially dry and saturated model lines limit the evolution of the model parameters in the intermediate saturation states. A mid-loading change in the saturation of the granular medium results in an increased rate of particle breakage. The experimental data available in the literature is analyzed in light of the proposed model, which allows a better understanding of the development of particle breakage under the influence of water.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the financial supports of the Natural Sciences and Engineering Research Council of Canada (NSERC) and their industrial partners, Hydro Québec, Klohn Crippen Berger, SNC-Lavalin, Golder Associates, Conetec, Hatch, WSP, and Qualitas.

References

Alonso, E. E., E. E. Romero, and E. Ortega. 2016. “Yielding of rockfill in relative humidity-controlled triaxial experiments.” Acta Geotech. 11 (3): 455–477. https://doi.org/10.1007/s11440-016-0437-9.
Bauer, E. 1996. “Calibration of a comprehensive hypoplastic model for granular materials.” Soils Found. 36 (1): 13–26. https://doi.org/10.3208/sandf.36.13.
Bauer, E. 2009. “Hypoplastic modelling of moisture-sensitive weathered rockfill materials.” Acta Geotech. 4 (4): 261–272. https://doi.org/10.1007/s11440-009-0099-y.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Biarez, J., and P.-Y. Hicher. 1997. “Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires.” Rev. Fr. Génie Civ. 1 (4): 607–631. https://doi.org/10.1080/12795119.1997.9692147.
Bolton, M. D., and G. R. McDowell. 1996. “Clastic mechanics.” In IUTAM Symp. on Mechanics of Granular and Porous Materials, 35–46. Dordrecht, Netherlands: Springer Netherlands.
Buscarnera, G., and I. Einav. 2012. “The yielding of brittle unsaturated granular soils.” Géotechnique 62 (2): 147–160. https://doi.org/10.1680/geot.10.P.118.
Chávez, C., and E. E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Chávez, C., E. Romero, and E. E. Alonso. 2009. “A rockfill triaxial cell with suction control.” Geotech. Test. J. 32 (3): 219–231. https://doi.org/10.1520/GTJ101590.
Colliat-Dangus, J.-L. 1986. “Comportement des matériaux granulaires sous fortes contraintes—Influence de la nature minéralogique du matériau étudié.” Ph.D. thesis, Université scientifique et médicale et l’institut national polytechnique de Grenoble.
Colliat-Dangus, J.-L., J. Desrues, and P. Foray. 1988. “Triaxial testing of granular soil under elevated cell pressure.” In Advanced triaxial testing of soil and rock, edited by R. Donaghe, R. Chaney, and M. Silver, 290–310. Philadelphia, PA: ASTM.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Einav, I. 2007a. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Einav, I. 2007b. “Breakage mechanics—Part II: Modelling granular materials.” J. Mech. Phys. Solids 55 (6): 1298–1320. https://doi.org/10.1016/j.jmps.2006.11.004.
Fowell, R. J. 1995. “Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32 (1): 57–64. https://doi.org/10.1016/0148-9062(94)00015-U.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Jaeger, J. C. 1967. “Failure of rocks under tensile conditions.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (2): 219–227. https://doi.org/10.1016/0148-9062(67)90046-0.
Konrad, J.-M., and Y. Salami. 2018. “Particle breakage in granular materials—A conceptual framework.” Can. Geotech. J. 55 (5): 710–719. https://doi.org/10.1139/cgj-2017-0224.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Leclerc, I. 1998. “Indice de broyage de matériaux pulvérulents en conditions oedométriques.” Ph.D. thesis, Département de Génie Civil, Laval Univ.
Marsal, R. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
Marsal, R. J. 1973. “Mechanical properties of rockfill.” In Embankment dam engineering, edited by R. Hirschfeld, and S. Poulos, 109–200. Philadelphia, PA: ASTM.
Nobari, E., and J. Duncan. 1972. Effect of reservoir filling on stresses and movements in earth and rockfill dams. Rep. No. TE-72-1. Berkeley, CA: Dept. of Civil Engineering, Univ. of California.
Oldecop, L. A. 2000. Compresibilidad de escolleras influencia de la humedad. Barcelona, Spain: Polytechnic Univ. of Catalunia.
Oldecop, L. A., and E. E. Alonso. 2001. “A model for rockfill compressibility.” Géotechnique 51 (2): 127–139. https://doi.org/10.1680/geot.2001.51.2.127.
Oldecop, L. A., and E. E. Alonso. 2003. “Suction effects on rockfill compressibility.” Géotechnique 53 (2): 289–292. https://doi.org/10.1680/geot.2003.53.2.289.
Oldecop, L. A., and E. E. Alonso. 2007. “Theoretical investigation of the time-dependent behaviour of rockfill.” Géotechnique 57 (3): 289–301. https://doi.org/10.1680/geot.2007.57.3.289.
Ovalle, C. 2013. Contribution à l’étude des grains dans les milieux granulaires. Nantes, France: Ecole Centrale de Nantes.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Roy, M. 1970. “The shear behaviour of granular materials under high pressures with particular reference to particle breakage.” Ph.D. thesis, Laval Univ.
Salami, Y. 2016. Analyse multi-échelle de l’approche énergétique de la rupture des grains au sein de matériaux granulaires. Nantes, France: Ecole Centrale de Nantes.
Soriano, A., and F. Sánchez. 1999. “Settlements of railroad high embankments.” In Proc., 12th European Conf. on Soil Mechanics and Geotechnical Engineering, 1885–1890. Amsterdam, Netherlands: Balkema.
Sowers, G. F., R. C. Williams, and T. S. Wallace. 1965. “Compressibility of broken rock and settlement of rockfills.” In Proc., 6th Int. Conf. on Soil Mechanics and Foundation Engineering, 561–565. Montréal: University of Toronto Press.
Turcotte, D. L. 1986. “Fractals and fragmentation.” J. Geophys. Res. 91 (B2): 1921. https://doi.org/10.1029/JB091iB02p01921.
Yamamuro, J. A., and P. V. Lade. 1993. “Effects of strain rate on instability of granular soils.” Geotech. Test. J. 16 (3): 304–313. https://doi.org/10.1520/GTJ10051J.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 9September 2021

History

Received: Dec 3, 2020
Accepted: Apr 20, 2021
Published online: Jun 18, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

National School of Architecture of Fès, Parc Fès-Shore, 30000 Fès, Morocco (corresponding author). ORCID: https://orcid.org/0000-0002-9990-635X. Email: [email protected]
Jean-Marie Konrad [email protected]
Département de génie civil et de génie des eaux, Université Laval, 1065, avenue de la médecine, Québec, QC, Canada G1V 0A6. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share