Technical Papers
Jan 15, 2021

Phase Field Characterization of Rock Fractures in Brazilian Splitting Test Specimens Containing Voids and Inclusions

Publication: International Journal of Geomechanics
Volume 21, Issue 3

Abstract

The Brazilian splitting test is a broadly adopted testing procedure for characterizing the tensile strength of natural rock or rock-like material. However, the results of the Brazilian test on specimens with naturally existing voids and inclusions are strongly influenced by size effects and boundary conditions, and numerical modeling can assist in explaining and understanding the mechanisms. On the other hand, the potential of utilizing the Brazilian test to characterize inhomogeneous deformation of rock samples with voids and inclusions of dissimilar materials still awaits exploration. In the present study, fracture mechanisms in Brazilian disks with circular voids and filled inclusions are studied by using the phase field model (PFM). The finite element method is adopted to implement the PFM to study the influence of diameter, eccentricity, and quantity of the voids and inclusions on the fracture patterns and stress-strain curves. The phase field simulations can reproduce previous experimental phenomena and furthermore it deepens the understanding of the influence of inclusions and voids on the fracture pattern, overall strength, and deformation behavior of inhomogeneous rock. The findings in the study highlight the potential of characterizing inhomogeneous rock through combining Brazilian tests and numerical modeling.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge financial support provided by Deutsche Forschungsgemeinschaft (DFG ZH 459/3-1) and RISE-project BESTOFRAC (734370).

References

Abdollahipour, A., M. Fatehi Marji, A. Yarahmadi Bafghi, and J. Gholamnejad. 2016a. “Numerical investigation of effect of crack geometrical parameters on hydraulic fracturing process of hydrocarbon reservoirs.” J. Min. Environ. 7 (2): 205–214.
Abdollahipour, A., M. F. Marji, A. Y. Bafghi, and J. Gholamnejad. 2016b. “Time-dependent crack propagation in a poroelastic medium using a fully coupled hydromechanical displacement discontinuity method.” Int. J. Fract. 199 (1): 71–87. https://doi.org/10.1007/s10704-016-0095-9.
Anderson, T. L. 2005. Fracture mechanics: Fundamentals and applications. Boca Raton, FL: CRC Press.
Bobet, A., and H. Einstein. 1998. “Fracture coalescence in rock-type materials under uniaxial and biaxial compression.” Int. J. Rock Mech. Min. Sci. 35 (7): 863–888. https://doi.org/10.1016/S0148-9062(98)00005-9.
Borden, M. J., C. V. Verhoosel, M. A. Scott, T. J. Hughes, and C. M. Landis. 2012. “A phase-field description of dynamic brittle fracture.” Comput. Methods Appl. Mech. Eng. 217: 77–95. https://doi.org/10.1016/j.cma.2012.01.008.
Bourdin, B., G. A. Francfort, and J.-J. Marigo. 2000. “Numerical experiments in revisited brittle fracture.” J. Mech. Phys. Solids 48 (4): 797–826. https://doi.org/10.1016/S0022-5096(99)00028-9.
Cao, C., Z. Xu, J. Chai, Y. Qin, and R. Tan. 2018a. “Mechanical and hydraulic behaviors in a single fracture with asperities crushed during shear.” Int. J. Geomech. 18 (11): 04018148. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001277.
Cao, W., L. N. Mohammad, and P. Barghabany. 2018b. “Use of viscoelastic continuum damage theory to correlate fatigue resistance of asphalt binders and mixtures.” Int. J. Geomech. 18 (11): 04018151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001306.
Chang, X., J. Tang, G. Wang, and C. Tang. 2018. “Mechanical performances of rock-like disc containing circular inclusion subjected to diametral compression.” Arch. Civ. Mech. Eng. 18 (2): 356–370. https://doi.org/10.1016/j.acme.2017.07.008.
Chen, Y., M. Irfan, and C. Song. 2018. “Verification of the kaiser effect in rocks under tensile stress: Experiment using the Brazilian test.” Int. J. Geomech. 18 (7): 04018059. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001181.
Chong, K., and M. Kuruppu. 1984. “New specimen for fracture toughness determination for rock and other materials.” Int. J. Fract. 26 (2): R59–R62. https://doi.org/10.1007/BF01157555.
Dai, F., K. Xia, H. Zheng, and Y. Wang. 2011. “Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen.” Eng. Fract. Mech. 78 (15): 2633–2644. https://doi.org/10.1016/j.engfracmech.2011.06.022.
Duda, F. P., A. Ciarbonetti, P. J. Sánchez, and A. E. Huespe. 2015. “A phase-field/gradient damage model for brittle fracture in elastic–plastic solids.” Int. J. Plast. 65: 269–296. https://doi.org/10.1016/j.ijplas.2014.09.005.
Fang, J., C. Wu, T. Rabczuk, C. Wu, C. Ma, G. Sun, and Q. Li. 2019. “Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies.” Theor. Appl. Fract. Mech. 103: 102252. https://doi.org/10.1016/j.tafmec.2019.102252.
Gou, Y., X. Shi, X. Qiu, J. Zhou, H. Chen, and X. Huo. 2019. “Propagation characteristics of blast-induced vibration in parallel jointed rock mass.” Int. J. Geomech. 19 (5): 04019025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001393.
Haeri, H., A. Khaloo, and M. F. Marji. 2015. “Experimental and numerical analysis of Brazilian discs with multiple parallel cracks.” Arabian J. Geosci. 8 (8): 5897–5908. https://doi.org/10.1007/s12517-014-1598-1.
Han, T., J. Shi, Y. Chen, and X. Cao. 2018. “Quantifying microstructural damage of sandstone after hydrochemical corrosion.” Int. J. Geomech. 18 (10): 04018121. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001237.
Hesch, C., and K. Weinberg. 2014. “Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture.” Int. J. Numer. Methods Eng. 99 (12): 906–924. https://doi.org/10.1002/nme.v99.12.
Jongpradist, P., J. Tunsakul, W. Kongkitkul, N. Fadsiri, G. Arangelovski, and S. Youwai. 2015. “High internal pressure induced fracture patterns in rock masses surrounding caverns: Experimental study using physical model tests.” Eng. Geol. 197: 158–171. https://doi.org/10.1016/j.enggeo.2015.08.024.
Le, H., S. Sun, P. H. Kulatilake, and J. Wei. 2018. “Effect of grout on mechanical properties and cracking behavior of rock-like specimens containing a single flaw under uniaxial compression.” Int. J. Geomech. 18 (10): 04018129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001225.
Lee, J., J.-W. Hong, and J.-W. Jung. 2017. “The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws.” Eng. Geol. 223: 31–47. https://doi.org/10.1016/j.enggeo.2017.04.014.
Marji, M. F. 2013. “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method.” Eng. Fract. Mech. 98: 365–382. https://doi.org/10.1016/j.engfracmech.2012.11.015.
Marji, M. F. 2014. “Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method.” Int. J. Solids Struct. 51 (9): 1716–1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022.
Marji, M. F. 2015. “Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method.” J. Cent. South Univ. 22 (3): 1045–1054. https://doi.org/10.1007/s11771-015-2615-6.
Masoumi, H., H. Roshan, A. Hedayat, and P. C. Hagan. 2018. “Scale-size dependency of intact rock under point-load and indirect tensile Brazilian testing.” Int. J. Geomech. 18 (3): 04018006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001103.
Miehe, C., M. Hofacker, and F. Welschinger. 2010a. “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits.” Comput. Methods Appl. Mech. Eng. 199 (45): 2765–2778. https://doi.org/10.1016/j.cma.2010.04.011.
Miehe, C., F. Welschinger, and M. Hofacker. 2010b. “Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations.” Int. J. Numer. Methods Eng. 83 (10): 1273–1311. https://doi.org/10.1002/nme.v83:10.
Natarajan, S., R. K. Annabattula, E. Martínez-Pañeda, and al. et. 2019. “Phase field modelling of crack propagation in functionally graded materials.” Composites, Part B 169: 239–248. https://doi.org/10.1016/j.compositesb.2019.04.003.
Ni, P., G. Mei, and Y. Zhao. 2016. “Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: Physical modeling and analytical solutions.” Int. J. Geomech. 17 (6): 04016132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000838.
Oterkus, S., E. Madenci, and E. Oterkus. 2017. “Fully coupled poroelastic peridynamic formulation for fluid-filled fractures.” Eng. Geol. 225: 19–28. https://doi.org/10.1016/j.enggeo.2017.02.001.
Pakzad, R., S. Wang, and S. Sloan. 2018. “Numerical study of the failure response and fracture propagation for rock specimens with preexisting flaws under compression.” Int. J. Geomech. 18 (7): 04018070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001172.
Sagong, M., and A. Bobet. 2002. “Coalescence of multiple flaws in a rock-model material in uniaxial compression.” Int. J. Rock Mech. Min. Sci. 39 (2): 229–241. https://doi.org/10.1016/S1365-1609(02)00027-8.
Saksala, T., M. Hokka, V.-T. Kuokkala, and J. Mäkinen. 2013. “Numerical modeling and experimentation of dynamic Brazilian disc test on kuru granite.” Int. J. Rock Mech. Min. Sci. 59: 128–138. https://doi.org/10.1016/j.ijrmms.2012.12.018.
Sarfarazi, V., H. Haeri, M. F. Marji, and Z. Zhu. 2017. “Fracture mechanism of Brazilian discs with multiple parallel notches using PFC2D.” Period. Polytech., Civ. Eng. 61 (4): 653–663.
Vardar, Ö., and I. Finnie. 1975. “An analysis of the Brazilian disk fracture test using the Weibull probabilistic treatment of brittle strength.” Int. J. Fract. 11 (3): 495–508.
Villeneuve, M. C., M. S. Diederichs, and P. K. Kaiser. 2011. “Effects of grain scale heterogeneity on rock strength and the chipping process.” Int. J. Geomech. 12 (6): 632–647. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000194.
Wang, Z., A. He, G. Shi, and G. Mei. 2017. “Temperature effect on AE energy characteristics and damage mechanical behaviors of granite.” Int. J. Geomech. 18 (3): 04017163. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001094.
Wei, M.-D., F. Dai, N.-W. Xu, J.-F. Liu, and Y. Xu. 2016a. “Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks.” Rock Mech. Rock Eng. 49 (5): 1595–1609. https://doi.org/10.1007/s00603-015-0855-2.
Wei, M.-D., F. Dai, N.-W. Xu, Y. Liu, and T. Zhao. 2017a. “Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion.” Eng. Fract. Mech. 186: 21–38. https://doi.org/10.1016/j.engfracmech.2017.09.026.
Wei, M.-D., F. Dai, N.-W. Xu, and T. Zhao. 2016b. “Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks.” Eng. Fract. Mech. 168: 174–189. https://doi.org/10.1016/j.engfracmech.2016.10.004.
Wei, M.-D., F. Dai, N.-W. Xu, T. Zhao, and Y. Liu. 2017b. “An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks.” Int. J. Rock Mech. Min. Sci. 99: 28–38. https://doi.org/10.1016/j.ijrmms.2017.09.004.
Wong, R., K. Chau, C. Tang, and P. Lin. 2001. “Analysis of crack coalescence in rock-like materials containing three flaw. Part I: Experimental approach.” Int. J. Rock Mech. Min. Sci. 38 (7): 909–924. https://doi.org/10.1016/S1365-1609(01)00064-8.
Wu, J.-Y. 2017. “A unified phase-field theory for the mechanics of damage and quasi-brittle failure.” J. Mech. Phys. Solids 103: 72–99. https://doi.org/10.1016/j.jmps.2017.03.015.
Xia, C.-C., S.-W. Zhou, P.-Y. Zhang, Y.-S. Hu, and Y. Zhou. 2015. “Strength criterion for rocks subjected to cyclic stress and temperature variations.” J. Geophys. Eng. 12 (5): 753. https://doi.org/10.1088/1742-2132/12/5/753.
Xiao, Y., M. Zhao, H. Zhao, and R. Zhang. 2018. “Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids.” Int. J. Geomech. 18 (9): 04018108. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001262.
Xu, J.-M., F. Liu, Z.-Y. Chen, and Y.-J. Wu. 2017. “Digital features of main constituents in granite during crack initiation and propagation.” Eng. Geol. 225: 96–102. https://doi.org/10.1016/j.enggeo.2017.03.003.
Xu, X., S. Wu, A. Jin, and Y. Gao. 2018. “Review of the relationships between crack initiation stress, mode i fracture toughness and tensile strength of geo-materials.” Int. J. Geomech. 18 (10): 04018136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001227.
Yang, J., W. Chen, D. Yang, and G. Wu. 2019. “Estimation of elastic compliance matrix of rock mass containing penny-shaped fractures.” Int. J. Geomech. 19 (5): 06019007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001385.
Yang, S.-Q., Y.-H. Huang, W.-L. Tian, and J.-B. Zhu. 2017. “An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression.” Eng. Geol. 217: 35–48. https://doi.org/10.1016/j.enggeo.2016.12.004.
Zhang, K., T. Yang, H. Bai, and R. Pathegama Gamage. 2017. “Longwall mining–induced damage and fractures: Field measurements and simulation using FDM and DEM coupled method.” International Journal of Geomechanics 18 (1): 04017127. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001040.
Zhang, X.-P., Q. Liu, S. Wu, and X. Tang. 2015. “Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression.” Eng. Geol. 199: 74–90. https://doi.org/10.1016/j.enggeo.2015.10.007.
Zhou, S., T. Rabczuk, and X. Zhuang. 2018a. “Phase field modeling of quasi-static and dynamic crack propagation: Comsol implementation and case studies.” Adv. Eng. Software 122: 31–49. https://doi.org/10.1016/j.advengsoft.2018.03.012.
Zhou, S., X. Zhuang, and T. Rabczuk. 2018b. “A phase-field modeling approach of fracture propagation in poroelastic media.” Eng. Geol. 240: 189–203. https://doi.org/10.1016/j.enggeo.2018.04.008.
Zhou, S., X. Zhuang, and T. Rabczuk. 2019a. “Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation.” Comput. Methods Appl. Mech. Eng. 355: 729–752. https://doi.org/10.1016/j.cma.2019.06.021.
Zhou, S., X. Zhuang, and T. Rabczuk. 2019b. “Phase-field modeling of fluid-driven dynamic cracking in porous media.” Comput. Methods Appl. Mech. Eng. 350: 169–198. https://doi.org/10.1016/j.cma.2019.03.001.
Zhou, S., X. Zhuang, H. Zhu, and T. Rabczuk. 2018c. “Phase field modelling of crack propagation, branching and coalescence in rocks.” Theor. Appl. Fract. Mech. 96: 174–192. https://doi.org/10.1016/j.tafmec.2018.04.011.
Zhou, S.-W., and C.-C. Xia. 2019. “Propagation and coalescence of quasi-static cracks in Brazilian disks: An insight from a phase field model.” Acta Geotech. 14 (4): 1195–1214. https://doi.org/10.1007/s11440-018-0701-2.
Zhou, X.-P., and Y.-T. Wang. 2016. “Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics.” Int. J. Rock Mech. Min. Sci. 89: 235–249. https://doi.org/10.1016/j.ijrmms.2016.09.010.
Zhu, W., and C. Tang. 2006. “Numerical simulation of Brazilian disk rock failure under static and dynamic loading.” Int. J. Rock Mech. Min. Sci. 43 (2): 236–252. https://doi.org/10.1016/j.ijrmms.2005.06.008.
Zhuang, X., S. Zhou, M. Sheng, and G. Li. 2020. “On the hydraulic fracturing in naturally-layered porous media using the phase field method.” Eng. Geol. 266: 105306. https://doi.org/10.1016/j.enggeo.2019.105306.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 3March 2021

History

Received: Aug 22, 2019
Accepted: Sep 29, 2020
Published online: Jan 15, 2021
Published in print: Mar 1, 2021
Discussion open until: Jun 15, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Shuwei Zhou
Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, P.R. China; Institute of Advanced Studies, Tongji Univ., Shanghai 200092, P.R. China.
Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, P.R. China; Institute of Photonics, Dept. of Mathematics and Physics, Leibniz Univ. Hannover, Appelstrasse 11, 30167 Hannover, Germany. ORCID: https://orcid.org/0000-0001-6562-2618.
Jianming Zhou
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.
Dept. of Geotechnical Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, P.R. China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share