Technical Papers
Dec 21, 2020

Stress-Dilatancy Behavior of MICP-Treated Sand

Publication: International Journal of Geomechanics
Volume 21, Issue 3

Abstract

Biocementation of soil using microbial-induced carbonate precipitation has become a new approach for soil treatment. The biocemented sand behaves differently from uncemented sand. One of the major differences is the stress-dilatancy behavior. In this paper, the experimental data obtained from isotropically consolidated drained triaxial tests are presented. The data showed that the biocemented sand exhibited much higher dilatancy than uncemented sand of the same density in drained triaxial tests. The higher the calcium carbonate content, the higher the dilation. Higher dilatancy was also related to higher shear strength, which was mainly due to higher effective cohesion. The variation in effective cohesion with the calcium carbonate content is discussed. The stress-dilatancy relationship of biocemented sand can be interpreted under the framework of Rowe’s stress-dilatancy theory: the biocemented sand behaved like dense sand in terms of the stress-dilatancy relationship.

Get full access to this article

View all available purchase options and get full access to this article.

References

Airey, D. W. 1993. “Triaxial testing of naturally cemented carbonate soil.” J. Geotech. Eng. 119 (9): 1379–1398. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379).
Arulrajah, A., T. A. Kua, C. Phetchuay, S. Horpibulsuk, F. Mahghoolpilehrood, and M. M. Disfani. 2016. “Spent coffee grounds–fly ash geopolymer used as an embankment structural fill material.” J. Mater. Civ. Eng. 28 (5): 04015197. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001496.
ASTM. 2017. Standard specification for standard sand. ASTM C778-17. West Conshohocken, PA: ASTM International.
Burbank, M. B., T. J. Weaver, T. L. Green, B. C. Williams, and R. L. Crawford. 2011. “Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils.” Geomicrobiol. J. 28 (4): 301–312. https://doi.org/10.1080/01490451.2010.499929.
Carmona, J. P. S. F., P. J. V. Oliveira, and L. J. L. Lemos. 2016. “Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation.” Procedia Eng. 143: 1301–1308. https://doi.org/10.1016/j.proeng.2016.06.144.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Choi, S. G., S. S. Park, S. F. Wu, and J. Chu. 2017. “Methods for calcium carbonate content measurement of biocemented soils.” J. Mater. Civ. Eng. 29 (11): 06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064.
Choi, S. G., S. F. Wu, and J. Chu. 2016. “Biocementation for sand using an eggshell as calcium source.” J. Geotech. Geoenviron. Eng. 142 (10): 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Chu, J. 1995. “An experimental examination of the critical state and other similar concepts for granular soils.” Can. Geotech. J. 32 (6): 1065–1075. https://doi.org/10.1139/t95-104.
Chu, J., V. Ivanov, J. He, and M. Maeimi. 2014. “Use of biogeotechnologies for disaster mitigation.” In Geotechnics for catastrophic flooding events, 49–56. Boca Raton, FL: CRC Press.
Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Chu, J., S. Leroueil, and W. K. Leong. 2003. “Unstable behaviour of sand and its implication for slope instability.” Can. Geotech. J. 40 (5): 873–885. https://doi.org/10.1139/t03-039.
Consoli, N. C., R. C. Cruz, A. V. da Fonseca, and M. R. Coop. 2012. “Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 138 (1): 100–109. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000565.
Coop, M. R., and J. H. Atkinson. 1993. “The mechanics of cemented carbonate sands.” Géotechnique 43 (1): 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
Cuccovillo, T., and M. R. Coop. 1999. “On the mechanics of structured sands.” Géotechnique 49 (6): 741–760. https://doi.org/10.1680/geot.1999.49.6.741.
Cui, M. J., J. J. Zheng, R. J. Zhang, H. J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J., T. Mortensen, B. M. Montoya, B. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
El Howayek, A., A. Bobet, and M. Santagata. 2019. “Microstructure and cementation of two carbonatic fine-grained soils.” Can. Geotech. J. 56 (3): 320–334. https://doi.org/10.1139/cgj-2018-0059.
Esposito III, M. P., and R. D. Andrus. 2017. “Peak shear strength and dilatancy of a pleistocene age sand.” J. Geotech. Geoenviron. Eng. 143 (1): 04016079. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001582.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Fukue, M., T. Nakamura, and Y. Kato. 1999. “Cementation of soils due to calcium carbonate.” Soils Found. 39 (6): 55–64. https://doi.org/10.3208/sandf.39.6_55.
Hamdan, N., and E. Kavazanjian Jr. 2016. “Enzyme-induced carbonate mineral precipitation for fugitive dust control.” Géotechnique 66 (7): 546–555. https://doi.org/10.1680/jgeot.15.P.168.
Hamed Khodadadi, T., E. Kavazanjian, L. van Paassen, and J. DeJong. 2017. “Bio-grout materials: A review.” In Grouting 2017, Geological Special Publication 288, edited by M. J. Byle, L. F. Johnsen, D. A. Bruce, C. S. El Mohtar, P. Gazzarrini, and T. D. Richards Jr, 1–12. Reston, VA: ASCE.
Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
He, J., J. Chu, Y. Gao, and H. Liu. 2019. “Research advances and challenges in biogeotechnologies.” Geotech. Res. 6 (2): 144–155. https://doi.org/10.1680/jgere.18.00035.
Hoang, T., J. Alleman, B. Cetin, K. Ikuma, and S. G. Choi. 2019. “Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP).” Can. Geotech. J. 56 (6): 808–822. https://doi.org/10.1139/cgj-2018-0191.
Huang, J. T., and D. W. Airey. 1998. “Properties of artificially cemented carbonate sand.” J. Geotech. Geoenviron. Eng. 124 (6): 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492).
Ishihara, K. 1993. “Liquefaction and flow failure during earthquakes.” Géotechnique 43 (3): 351–451. https://doi.org/10.1680/geot.1993.43.3.351.
Ismail, M. A., H. A. Joer, W. H. Sim, and M. F. Randolph. 2002. “Effect of cement type on shear behavior of cemented calcareous soil.” J. Geotech. Geoenviron. Eng. 128 (6): 520–529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520).
Jiang, M. J., H. B. Yan, H. H. Zhu, and S. Utili. 2011. “Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses.” Comput. Geotech. 38 (1): 14–29. https://doi.org/10.1016/j.compgeo.2010.09.001.
Jiang, N. J., and K. Soga. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Lade, P. V., and D. D. Overton. 1989. “Cementation effects in frictional materials.” J. Geotech. Eng. 115 (10): 1373–1387. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373).
Li, B. 2015. “Geotechnical properties of biocement treated sand and clay.” Ph.D. thesis, School of Civil and Environmental Engineering, Nanyang Technological Univ.
Liang, J., Z. Guo, L. Deng, and Y. Liu. 2015. “Mature fine tailings consolidation through microbial induced calcium carbonate precipitation.” Can. J. Civ. Eng. 42 (11): 975–978. https://doi.org/10.1139/cjce-2015-0069.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/cgj-2016-0438.
Mohammadinia, A., A. Arulrajah, J. Sanjayan, M. M. Disfani, M. W. Bo, and S. Darmawan. 2016. “Strength development and microfabric structure of construction and demolition aggregates stabilized with fly ash–based geopolymers.” J. Mater. Civ. Eng. 28 (11): 04016141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001652.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Rios, S., A. Viana da Fonseca, and B. A. Baudet. 2014. “On the shearing behaviour of an artificially cemented soil.” Acta Geotech. 9 (2): 215–226. https://doi.org/10.1007/s11440-013-0242-7.
Rowe, P. W. 1962. “The stress-dilatancy relation for the static equilibrium of an assembly of particles in contact.” Proc. R. Soc. 269: 500–527.
Schnaid, F., P. Prietto, and N. C. Consoli. 2001. “Characterization of cemented sand in triaxial compression.” J. Geotech. Geoenviron. Eng. 127 (10): 857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
Simatupang, M., and M. Okamura. 2017. “Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing.” Soils Found. 57 (4): 619–631. https://doi.org/10.1016/j.sandf.2017.04.003.
Tagliaferri, F., J. Waller, E. Andò, S. A. Hall, G. Viggiani, P. Bésuelle, and J. T. DeJong. 2011. “Observing strain localisation processes in bio-cemented sand using x-ray imaging.” Granular Matter 13 (3): 247–250. https://doi.org/10.1007/s10035-011-0257-4.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Géotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Terzis, D., and L. Laloui. 2019. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (3): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Thomas O’Donnell, S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Murdoch Univ.
Wu, C., J. Chu, S. Wu, and W. Guo. 2019a. “Quantifying the permeability reduction of biogrouted rock fracture.” Rock Mech. Rock Eng. 52 (3): 947–954. https://doi.org/10.1007/s00603-018-1669-9.
Wu, C., J. Chu, S. Wu, and Y. Hong. 2019b. “3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction.” Eng. Geol. 249: 23–30. https://doi.org/10.1016/j.enggeo.2018.12.017.
Wu, S., B. Li, and J. Chu. 2019c. “Large-scale model tests of biogrouting for sand and rock.” Proc. of the Institution of Civil Engineers-Ground Improvement, 1–10. https://doi.org/10.1680/jgrim.18.00074.
Xiao, Y., Y. Wang, C. S. Desai, X. Jiang, and H. Liu. 2019. “Strength and deformation responses of biocemented sands using a temperature-controlled method.” Int. J. Geomech. 19 (11): 04019120. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497.
Yang, P., S. O’Donnell, N. Hamdan, E. Kavazanjian, and N. Neithalath. 2017. “3D DEM simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation.” Int. J. Geomech. 17 (6): 04016143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000848.
Yasuhara, H., N. Kinoshita, D. S. Lee, J. Choi, and K. Kishida. 2017. “Evolution of mechanical and hydraulic properties in sandstone induced by simulated mineral trapping of CO2 geo-sequestration.” Int. J. Greenhouse Gas Control 56: 155–164. https://doi.org/10.1016/j.ijggc.2016.11.018.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 3March 2021

History

Received: Dec 29, 2019
Accepted: Sep 23, 2020
Published online: Dec 21, 2020
Published in print: Mar 1, 2021
Discussion open until: May 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Research Fellow, School of Civil and Environmental Engineering, Nanyang Technological Univ., Singapore 639798. ORCID: https://orcid.org/0000-0002-4854-3392.
Bing Li, Ph.D.
Center Manager, NTU-JTC Industrial Infrastructure Innovation Centre, School of Civil and Environmental Engineering, Nanyang Technological Univ., Singapore 639798.
Jian Chu, Ph.D. [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., Blk N1, 50 Nanyang Ave, Singapore 639798 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share