Abstract

Time-dependent deformation of crushable soils attributable to particle breakage could dominate the postconstruction stability of high rockfill dams and pile foundations. The evolutionary trends of the volumetric strain, particle-size distribution (PSD), and particle breakage of carbonate sands with 10% fines content for various loading durations and vertical stress levels are investigated by performing a series of one-dimensional compression tests. Loading durations ranging from 1 to 10,000 min, vertical stress levels ranging from 200 to 3,200 kPa, and fines content percentages ranging from 0 to 20 are considered. The results indicate that the increased loading duration in the initial stage has a significant effect on the volumetric strain; however, as the loading duration increases, this effect gradually decreases. In addition, the PSD curve shifts upward as the loading duration increases, indicating that the amount of particle breakage increases accordingly. Both the loading duration and the vertical stress can induce PSD changes in carbonate sands. Empirical equations are proposed to describe the relationship between the relative particle breakage index and the loading duration as well as the relationship between the relative particle breakage index and the vertical stress.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Natural Science Foundation of China (Grant Nos. 41831282, 51678094, 51578096, and 51509024), and the project funded by the China Postdoctoral Science Foundation (Grant No. 2016M590864).

Notations

The following symbols are used in this paper:
Bp
potential breakage (%);
Br
relative breakage index (%);
Bt
total breakage (%);
D50
mean particle diameter (mm);
d
grain diameter (mm);
dM
maximum grain diameter (mm);
e
void ratio;
en
normalized void ratio;
eu
ultimate void ratio;
ID
relative density;
R2
regression parameter;
t
loading duration (min);
α
fractal dimension;
ɛv
volumetric strain (%);
εvn
normalized volumetric strain;
εvu
ultimate volumetric strain (%);
σv
vertical stress (kPa); and
χt, kt, λt, χσ, kσ, and λσ
fitting parameters.

References

Afshar, T., M. M. Disfani, A. Arulrajah, G. A. Narsilio, and S. Emam. 2017. “Impact of particle shape on breakage of recycled construction and demolition aggregates.” Powder Technol. 308: 1–12. https://doi.org/10.1016/j.powtec.2016.11.043.
Alikarami, R., E. Andò, M. Gkiousas-Kapnisis, A. Torabi, and G. Viggiani. 2015. “Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ X-ray tomography.” Acta Geotech. 10 (1): 15–30. https://doi.org/10.1007/s11440-014-0364-6.
Alonso, E. E., and L. A. Oldecop. 2007. “Theoretical investigation of the time-dependent behaviour of rockfill.” Géotechnique 57 (3): 289–301. https://doi.org/10.1680/geot.2007.57.3.289.
Alonso, E. E., E. E. Romero, and E. Ortega. 2016. “Yielding of rockfill in relative humidity-controlled triaxial experiments.” Acta Geotech. 11 (3): 455–477. https://doi.org/10.1007/s11440-016-0437-9.
Altuhafi, F. N., R. J. Jardine, V. N. Georgiannou, and W. W. Moinet. 2018. “Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles.” Géotechnique 68 (6): 546–555. https://doi.org/10.1680/jgeot.17.P.117.
Belkhatir, M., A. Arab, T. Schanz, H. Missoum, and N. Della. 2011. “Laboratory study on the liquefaction resistance of sand-silt mixtures: Effect of grading characteristics.” Granular Matter 13 (5): 599–609. https://doi.org/10.1007/s10035-011-0269-0.
Ben-Nun, O., and I. Einav. 2010. “The role of self-organization during confined comminution of granular materials.” Philos. Trans. R. Soc. London, Ser. A 368 (1910): 231–247. https://doi.org/10.1098/rsta.2009.0205.
Bobei, D. C., S. R. Lo, D. Wanatowski, C. T. Gnanendran, and M. M. Rahman. 2009. “Modified state parameter for characterizing static liquefaction of sand with fines.” Can. Geotech. J. 46 (3): 281–295. https://doi.org/10.1139/T08-122.
Carraro, J. A. H., M. Prezzi, and R. Salgado. 2009. “Shear strength and stiffness of sands containing plastic or nonplastic fines.” J. Geotech. Geoenviron. Eng. 135 (9): 1167–1178. https://doi.org/10.1061/%28ASCE%291090-0241%282009%29135:9%281167%29.
Cavarretta, I., C. O'Sullivan, and M. R. Coop. 2017. “The relevance of roundness to the crushing strength of granular materials.” Géotechnique 67 (4): 301–312. https://doi.org/10.1680/jgeot.15.P.226.
Chang, C. S., J.-Y. Wang, and L. Ge. 2015. “Modeling of minimum void ratio for sand–silt mixtures.” Eng. Geol. 196: 293–304. https://doi.org/10.1016/j.enggeo.2015.07.015.
Chávez, C., and E. E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Chu, J., and W. K. Leong. 2002. “Effect of fines on instability behaviour of loose sand.” Géotechnique 52 (10): 751–755. https://doi.org/10.1680/geot.2002.52.10.751.
Cil, M. B., K. A. Alshibli, and P. Kenesei. 2017. “3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-ray diffraction and tomography.” J. Geotech. Geoenviron. Eng. 143 (9): 04017048. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001737.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Geotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Coop, M. R., K. K. Sorensen, T. B. Freitas, and G. Georgoutsos. 2004a. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Daouadji, A., and P.-y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
De Bono, J., and G. McDowell. 2016. “Particle breakage criteria in discrete-element modelling.” Geotechnique 66 (12): 1014–1027. https://doi.org/10.1680/jgeot.15.P.280.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Frossard, E., C. Dano, W. Hu, and P.-Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Geotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Fu, Z., S. Chen, and C. Peng. 2014. “Modeling cyclic behavior of rockfill materials in a framework of generalized plasticity.” Int. J. Geomech. 14 (2): 191–204. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000302.
Fu, Z., S. Chen, and B. Shi. 2018. “Large-scale triaxial experiments on the creep behavior of a saturated rockfill material.” J. Geotech. Geoenviron. Eng. 144 (7): 04018039. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001898.
Fu, Z., S. Chen, Q. Zhong, and Y. Zhang. 2019. “Modeling interaction between loading-induced and creep strains of rockfill materials using a hardening elastoplastic constitutive model.” Can. Geotech. J. 56 (10): 1380–1394. https://doi.org/10.1139/cgj-2018-0435.
Fukuoka, H., K. Sassa, and G. Wang. 2007. “Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests.” Landslides 4 (1): 63–74. https://doi.org/10.1007/s10346-006-0053-0.
Giretti, D., V. Fioravante, K. Been, and S. Dickenson. 2018. “Mechanical properties of a carbonate sand from a dredged hydraulic fill.” Géotechnique 68 (5): 410–420. https://doi.org/10.1680/jgeot.16.P.304.
Gupta, A. K. 2016. “Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test.” J. Rock Mech. Geotech. Eng. 8 (3): 378–388. https://doi.org/10.1016/j.jrmge.2015.12.005.
Hanley, K. J., C. O'Sullivan, and X. Huang. 2015. “Particle-scale mechanics of sand crushing in compression and shearing using DEM.” Soils Found. 55 (5): 1100–1112. https://doi.org/10.1016/j.sandf.2015.09.011.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/%28ASCE%290733-9410%281985%29111:10%281177%29.
Huang, J., S. Xu, and S. Hu. 2014. “Influence of particle breakage on the dynamic compression responses of brittle granular materials.” Mech. Mater. 68: 15–28. https://doi.org/10.1016/j.mechmat.2013.08.002.
Huang, J. Y., S. S. Hu, S. L. Xu, and S. N. Luo. 2017. “Fractal crushing of granular materials under confined compression at different strain rates.” Int. J. Impact Eng. 106: 259–265. https://doi.org/10.1016/j.ijimpeng.2017.04.021.
Hurley, R. C., J. Lind, D. C. Pagan, M. C. Akin, and E. B. Herbold. 2018. “In situ grain fracture mechanics during uniaxial compaction of granular solids.” J. Mech. Phys. Solids 112: 273–290. https://doi.org/10.1016/j.jmps.2017.12.007.
Hyde, A. F. L., and N. Yasufuku. 1995. “Pile end-bearing capacity in crushable sands.” Géotechnique 45 (4): 663–676. https://doi.org/10.1680/geot.1995.45.4.663.
Hyodo, M., Y. Wu, N. Aramaki, and Y. Nakata. 2017. “Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures.” Can. Geotech. J. 54 (2): 207–218. https://doi.org/10.1139/cgj-2016-0212.
Indraratna, B., P. K. Thakur, and J. S. Vinod. 2010. “Experimental and numerical study of railway ballast behavior under cyclic loading.” Int. J. Geomech. 10 (4): 136–144. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000055.
Indraratna, B., P. K. Thakur, J. S. Vinod, and W. Salim. 2012. “Semiempirical cyclic densification model for ballast incorporating particle breakage.” Int. J. Geomech. 12 (3): 260–271. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000135.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000977.
Karimpour, H., and P. V. Lade. 2010. “Time effects relate to crushing in sand.” J. Geotech. Geoenviron. Eng. 136 (9): 1209–1219. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0000335.
Kong, D., and J. Fonseca. 2018. “Quantification of the morphology of shelly carbonate sands using 3D images.” Géotechnique 68 (3): 249–261. https://doi.org/10.1680/jgeot.16.P.278.
Kong, X., J. Liu, D. Zou, and H. Liu. 2016. “Stress-dilatancy relationship of Zipingpu gravel under cyclic loading in triaxial stress states.” Int. J. Geomech. 16 (4): 04016001. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000584.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., C. D. Liggio, and J. Nam. 2009. “Strain rate, creep, and stress drop-creep experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 135 (7): 941–953. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0000067.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/%28ASCE%290733-9410%281996%29122:4%28309%29.
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Liu, M., and Y. Gao. 2017. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000759.
Liu, S., J. Wang, and C. Y. Kwok. 2019. “DEM simulation of creep in one-dimensional compression of crushable sand.” J. Geotech. Geoenviron. Eng. 145 (10): 04019060. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0002098.
Liu, Y., H. Liu, and H. Mao. 2017. “DEM investigation of the effect of intermediate principle stress on particle breakage of granular materials.” Comput. Geotech. 84: 58–67. https://doi.org/10.1016/j.compgeo.2016.11.020.
Lobo-Guerrero, S., L. E. Vallejo, and L. F. Vesga. 2006. “Visualization of crushing evolution in granular materials under compression using DEM.” Int. J. Geomech. 6 (3): 195–200. https://doi.org/10.1061/%28ASCE%291532-3641%282006%296:3%28195%29.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Ma, G., W. Zhou, T.-T. Ng, Y.-G. Cheng, and X.-L. Chang. 2015. “Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model.” Acta Geotech. 10 (4): 481–496. https://doi.org/10.1007/s11440-015-0367-y.
Man, S., and R. Chik-Kwong Wong. 2017. “Compression and crushing behavior of ceramic proppants and sand under high stresses.” J. Petrol. Sci. Eng. 158: 268–283. https://doi.org/10.1016/j.petrol.2017.08.052.
Mao, W., S. Aoyama, S. Goto, and I. Towhata. 2015. “Acoustic emission characteristics of subsoil subjected to vertical pile loading in sand.” J. Appl. Geophys. 119: 119–127. https://doi.org/10.1016/j.jappgeo.2015.05.017.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/%28asce%29gm.1943-5622.0001287.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096%2896%2900058-0.
McDowell, G. R., and J. P. De Bono. 2013. “A new creep law for crushable aggregates.” Geotech. Lett. 3: 103–107. https://doi.org/10.1680/geolett.13.00030.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001770.
Murff, J. D. 1987. “Pile capacity in calcareous sands: State if the art.” J. Geotech. Eng. 113 (5): 490–507. https://doi.org/10.1061/%28ASCE%290733-9410%281987%29113:5%28490%29.
Murthy, T. G., D. Loukidis, J. A. H. Carraro, M. Prezzi, and R. Salgado. 2007. “Undrained monotonic response of clean and silty sands.” Géotechnique 57 (3): 273–288. https://doi.org/10.1680/geot.2007.57.3.273.
Ni, Q., T. S. Tan, G. R. Dasari, and D. W. Hight. 2004. “Contribution of fines to the compressive strength of mixed soils.” Géotechnique 54 (9): 561–569. https://doi.org/10.1680/geot.2004.54.9.561.
Nimbalkar, S., B. Indraratna, S. K. Dash, D. Christie. 2012. “Improved performance of railway ballast under impact loads using shock mats.” J. Geotech. Geoenviron. Eng. 138 (3): 281–294. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0000598.
Oldecop, L. A., and E. E. Alonso. 2001. “A model for rockfill compressibility.” Géotechnique 51 (2): 127–139. https://doi.org/10.1680/geot.2001.51.2.127.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52: 587–598. https://doi.org/10.1139/cgj-2014-0079.
Papadopoulou, A., and T. Tika. 2008. “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands.” Soils Found. 48 (5): 713–725. https://doi.org/10.3208/sandf.48.713.
Polito, C. P., R. A. Green, and J. Lee. 2008. “Pore pressure generation models for sands and silty soils subjected to cyclic loading.” J. Geotech. Geoenviron. Eng. 134 (10): 1490–1500. https://doi.org/10.1061/%28ASCE%291090-0241%282008%29134:10%281490%29.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/%28ASCE%291090-0241%282001%29127:5%28408%29.
Rahman, M., and S. R. Lo. 2014. “Undrained behavior of sand-fines mixtures and their state parameter.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001115.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/%28ASCE%291090-0241%282000%29126:5%28451%29.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Géotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands, and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/%28ASCE%291090-0241%282002%29128:10%28849%29.
Timpong, S., S. Miura, and K. Yara. 2005. “Effect of consolidation time on shear modulus of crushable volcanic soils.” Soils Found. 45 (5): 115–119. https://doi.org/10.3208/sandf.45.5_115.
Ueng, T.-S., and T.-J. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Géotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
Underwood, J. N., S. K. Wilson, L. Ludgerus, and R. D. Evans. 2013. “Integrating connectivity science and spatial conservation management of coral reefs in north-west Australia.” J. Nat. Conserv. 21 (3): 163–172. https://doi.org/10.1016/j.jnc.2012.12.001.
Varadarajan, A., K. G. Sharma, S. M. Abbas, and A. K. Dhawan. 2006. “Constitutive model for rockfill materials and determination of material constants.” Int. J. Geomech. 6 (4): 226–237. https://doi.org/10.1061/%28ASCE%291532-3641%282006%296:4%28226%29.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/%28ASCE%291090-0241%282003%29129:3%28206%29.
Wang, J., and B. Zhao. 2014. “Discrete-continuum analysis of monotonic pile penetration in crushable sands.” Can. Geotech. J. 51 (10): 1095–1110. https://doi.org/10.1139/cgj-2013-0263.
Wang, X., C.-Q. Zhu, X.-Z. Wang, and Y. Qin. 2019. “Study of dilatancy behaviors of calcareous soils in a triaxial test.” Mar. Georesour. Geotechnol. 37 (9): 1057–1070. https://doi.org/10.1080/1064119X.2018.1526236.
Wang, X.-Z., Y.-Y. Jiao, R. Wang, M.-J. Hu, Q.-S. Meng, and F.-Y. Tan. 2011. “Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea.” Eng. Geol. 120 (1–4): 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Wang, X.-Z., X. Wang, Z.-C. Jin, C.-Q. Zhu, R. Wang, and Q.-S. Meng. 2017. “Investigation of engineering characteristics of calcareous soils from fringing reef.” Ocean Eng. 134: 77–86. https://doi.org/10.1016/j.oceaneng.2017.02.019.
Wei, H., T. Zhao, J. He, Q. Meng, and X. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0001073.
Wei, Z., C. Xiaolin, Z. Chuangbing, and L. Xinghong. 2010. “Creep analysis of high concrete-faced rockfill dam.” Int. J. Numer. Methods Biomed. Eng. 26 (11): 1477–1492. https://doi.org/10.1002/cnm.1230.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granular Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000538.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019a. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001994.
Xiao, Y., A. M. Stuedlein, Q. Chen, H. Liu, and P. Liu. 2018a. “Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive.” J. Geotech. Geoenviron. Eng. 144 (2): 04017108. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0001812.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/%28ASCE%29GT.1943-5606.0002141.
Xiao, Y., Z. Yuan, Y. Lv, L. Wang, and H. Liu. 2018b. “Fractal crushing of carbonate and quartz sands along the specimen height under impact loading.” Constr. Build. Mater. 182 (9): 188–199. https://doi.org/10.1016/j.conbuildmat.2018.06.112.
Xu, B., D. Zou, X. Kong, Y. Zhou, and X. Liu. 2017. “Concrete slab dynamic damage analysis of CFRD based on concrete nonuniformity.” Int. J. Geomech. 17 (9): 04017055. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000939.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Geoenviron. Eng. 122 (2): 147–154. https://doi.org/10.1061/%28ASCE%290733-9410%281996%29122:2%28147%29.
Yan, W. M., and Y. Shi. 2014. “Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression.” Geotech. Lett. 4: 223–229. https://doi.org/10.1680/geolett.14.00039.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, J., and L. M. Wei. 2012. “Collapse of loose sand with the addition of fines: The role of particle shape.” Géotechnique 62 (12): 1111–1125. https://doi.org/10.1680/geot.11.P.062.
Yang, S., S. Lacasse, and R. Sandven. 2006. “Determination of the transitional fines content of mixtures of sand and non-plastic fines.” Geotech. Test. J. 29 (2): 102–107. https://doi.org/10.1520/GTJ14010.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yin, Z.-Y., J. Zhao, and P.-Y. Hicher. 2014. “A micromechanics-based model for sand–silt mixtures.” Int. J. Solids Struct. 51 (6): 1350–1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000919.
Yu, F. 2018a. “Particle breakage and the undrained shear behavior of sands.” Int. J. Geomech. 18 (7): 04018079. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0001203.
Yu, F. 2018b. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Zhang, B., T. Chen, C. Peng, X. Qian, and Y. Jie. 2017. “Experimental study on loading-creep coupling effect in rockfill material.” Int. J. Geomech. 17 (9): 04017059. https://doi.org/10.1061/%28ASCE%29GM.1943-5622.0000938.
Zhang, B., J. G. Wang, and R. Shi. 2004. “Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer.” Comput. Geotech. 31 (7): 559–573. https://doi.org/10.1016/j.compgeo.2004.07.004.
Zhang, C., Z. X. Yang, G. D. Nguyen, R. J. Jardine, and I. Einav. 2014. “Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand.” Geotech. Lett. 4: 11–16. https://doi.org/10.1680/geolett.13.00075.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Geotech. Lett. 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.
Zheng, W., and D. Tannant. 2016. “Frac sand crushing characteristics and morphology changes under high compressive stress and implications for sand pack permeability.” Can. Geotech. J. 53 (9): 1412–1423. https://doi.org/10.1139/cgj-2016-0045.
Zhou, W., X. Chang, C. Zhou, and X. Liu. 2010. “Creep analysis of high concrete-faced rockfill dam.” Int. J. Numer. Methods Biomed. Eng. 26 (11): 1477–16492. https://doi.org/10.1002/cnm.1230.
Zhou, M., and E. Song. 2016. “A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory.” Acta Geotech. 11 (4): 827–847. https://doi.org/10.1007/s11440-016-0446-8.
Zhou, X., G. Ma, and Y. Zhang. 2018. “Grain size and time effect on the deformation of rockfill dams: A case study on the Shuibuya CFRD.” Geotechnique 69 (7): 606–619. https://doi.org/10.1680/jgeot.17.P.299.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 7July 2020

History

Received: Feb 23, 2019
Accepted: Jan 22, 2020
Published online: Apr 22, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Zhengxin Yuan [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chandrakant S. Desai, Dist.M.ASCE [email protected]
Regents’ Professor (Emeritus), Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]
Musharraf Zaman, F.ASCE [email protected]
David Ross Boyd Professor and Aaron Alexander Professor, School of Civil Engineering and Environmental Science, and Alumni Chair Professor of Petroleum and Geological Engineering, Univ. of Oklahoma, 202 W. Boyd St., Rm. 334, Norman, OK 73019. Email: [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Qingsheng Chen [email protected]
Research Fellow, Faculty of Engineering and Information Sciences, Univ. of Wollongong, NSW 2522, Australia. Email: [email protected]
Hanlong Liu, M.ASCE [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share