Technical Papers
Oct 14, 2019

Influence of Particle Breakage on Behavior of Coral Sands in Triaxial Tests

Publication: International Journal of Geomechanics
Volume 19, Issue 12

Abstract

This paper presents a laboratory experimental investigation of the behavior of coral sands. The investigation incorporated particle breakage to interpret its influence on consolidation and shear behavior, friction and dilatancy behavior, excess friction behavior, and state behavior of precrushed sands as measured by triaxial tests on a coral sand. Particle breakage impaired dilatancy, leading to a more contractive soil. It reduced friction and dilatancy angles, but increased basic friction angles. It also showed a complex influence on excess friction angles, revealing underestimation of the peak-state dilatancy angle by the excess friction angles. Particle breakage resulted in movement of the phase-transformation and peak states toward reduction in deviator stress, mean effective stress, and void ratio in the e-logp and q-p planes. In the e-logp plane, it resulted in translation, rotation, or translation and rotation of the critical-state line. In the q-p plane, particle breakage resulted in rotation of the critical-state line, incorporating lower-left movement of the critical states.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 41807268), the CAS “Light of West China” Program (Grant No. Y6R2250250), the Sichuan Science and Technology Program–China (Grant No. 2018JY0195), the Youth Innovation Promotion Association CAS–China (Grant No. 2018408), and the China Scholarship Council (Grant No. 2011671035).

References

Alikarami, R., E. Ando, M. Gkiousas-Kapnisis, A. Torabi, and G. Viggiani. 2015. “Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ X-ray tomography.” Acta Geotech. 10 (1): 15–30. https://doi.org/10.1007/s11440-014-0364-6.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Carraro, J. A. H., P. Bandini, and R. Salgado. 2003. “Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance.” J. Geotech. Geoenviron. Eng. 129 (11): 965–976. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965).
Carraro, J. A. H., M. Prezzi, and R. Salgado. 2009. “Shear strength and stiffness of sands containing plastic or nonplastic fines.” J. Geotech. Geoenviron. Eng. 135 (9): 1167–1178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167).
Carrera, A., M. R. Coop, and R. Lancellotta. 2011. “Influence of grading on the mechanical behaviour of stava tailings.” Géotechnique 61 (11): 935–946. https://doi.org/10.1680/geot.9.P.009.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Donohue, S., C. O’Sullivan, and M. Long. 2009. “Particle breakage during cyclic triaxial loading of a carbonate sand.” Géotechnique 59 (5): 477–482. https://doi.org/10.1680/geot.2008.T.003.
Einav, I. 2007a. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Einav, I. 2007b. “Breakage mechanics—Part II: Modeling granular materials.” J. Mech. Phys. Solids 55 (6): 1298–1320. https://doi.org/10.1016/j.jmps.2006.11.004.
Fourie, A. B., and G. Papageorgiou. 2001. “Defining an appropriate steady state line for Merriespruit gold tailings.” Can. Geotech. J. 38 (4): 695–706. https://doi.org/10.1139/t00-111.
Ghafghazi, M., D. A. Shuttle, and J. T. DeJoung. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hyodo, M., F. L. Hyde Adrian, N. Aramaki, and Y. Nakata. 2002. “Undrained monotonic and cyclic shear behavior of sand under low and high confining stresses.” Soils Found. 42 (3): 63–76. https://doi.org/10.3208/sandf.42.3_63.
Indraratna, B., and S. Nimbalkar. 2013. “Stress-strain degradation response of railway ballast stabilized with geosynthetics.” J. Geotech. Geoenviron. Eng. 139 (5): 684–700. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000758.
Indraratna, B., P. K. Thakur, and J. S. Vinod. 2010. “Experimental and numerical study of railway ballast behavior under cyclic loading.” Int. J. Geomech. 10 (4): 136–144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000055.
Indraratna, B., P. K. Thakur, J. S. Vinod, and W. Salim. 2012. “Semiempirical cyclic densification model for ballast incorporating particle breakage.” Int. J. Geomech. 12 (3): 260–271. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000135.
JGS (Japanese Geotechnical Society). 2015a. Method for consolidated-drained triaxial compression test on soils. JGS 0524. Tokyo: JGS.
JGS (Japanese Geotechnical Society). 2015b. Method for consolidated-undrained triaxial compression test on soils with pore water pressure measurements. JGS 0523. Tokyo: JGS.
JGS (Japanese Geotechnical Society). 2015c. Preparation of soil specimens for triaxial tests. JGS 0520. Tokyo: JGS.
JGS (Japanese Geotechnical Society). 2015d. Test method for density of soil particles. JGS 0111. Tokyo: JGS.
JGS (Japanese Geotechnical Society). 2015e. Test method for minimum and maximum densities of sands. JGS 0161. Tokyo: JGS.
JGS (Japanese Geotechnical Society). 2015f. Test method for particle size distribution of soils. JGS 0131. Tokyo: JGS.
Kikumoto, M., D. M. Wood, and A. Russell. 2010. “Particle crushing and deformation behaviour.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Konrad, J. M. 1998. “Sand state from cone penetrometer tests: A framework considering grain crushing stress.” Géotechnique 48 (2): 201–215. https://doi.org/10.1680/geot.1998.48.2.201.
Lade, P. V., and J. A. Yamamuro. 1996. “Undrained sand behaviour in axisymmetric tests at high pressures.” J. Geotech. Eng. 122 (2): 120–129. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(120).
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lee, K. L., and I. Farhoomand. 1967. “Compressibility and crushing of granular soil in anisotropic triaxial compression.” Can. Geotech. J. 4 (1): 68–86. https://doi.org/10.1139/t67-012.
Liu, C. Q., and R. Wang. 1999. “Evaluation of calcareous sand grain crushing and its energy equation.” [In Chinese.] J. Eng. Geol. 7 (4): 366–371.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Marsal, R. J. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Miura, N., and S. O-Hara. 1979. “Particle crushing of a decomposed granite soil under shear stresses.” Soils Found. 19 (3): 1–14. https://doi.org/10.3208/sandf1972.19.3_1.
Miura, S., K. Yagi, and T. Asonuma. 2003. “Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing.” Soils Found. 43 (4): 47–57. https://doi.org/10.3208/sandf.43.4_47.
Muir Wood, D., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Murthy, T. G., D. Loukidis, J. A. H. Carraro, M. Prezzi, and R. Salgado. 2007. “Undrained monotonic response of clean and silty sands.” Géotechnique 57 (3): 273–288. https://doi.org/10.1680/geot.2007.57.3.273.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001. “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils Found. 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
Ni, Q., T. S. Tan, G. R. Dasari, and D. W. Hight. 2004. “Contribution of fines to the compressive strength of mixed soils.” Géotechnique 54 (9): 561–569. https://doi.org/10.1680/geot.2004.54.9.561.
Ovalle, C., C. Dano, P.-y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Sadrekarimi, A., and S. M. Olson. 2010. “Particle damage observed in ring shear tests on sands.” Can. Geotech. J. 47 (5): 497–515. https://doi.org/10.1139/T09-117.
Sadrekarimi, A., and S. M. Olson. 2011. “Critical state friction angle of sands.” Géotechnique 61 (9): 771–783. https://doi.org/10.1680/geot.9.P.090.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Sun, J. Z., and R. Wang. 2004. “Influence of confining pressure on particle breakage and shear expansion of calcareous sand.” [In Chinese.] Chin. J. Rock Mech. Eng. 23 (4): 641–644.
Thevanayagam, S. 1998. “Effect of fines and confining stress on undrained shear strength of silty sands.” J. Geotech. Geoenviron. Eng. 124 (6): 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479).
Thevanayagam, S., T. Shenthan, S. Mohan, and J. Liang. 2002. “Undrained fragility of clean sands, silty sands and sandy silts.” J. Geotech. Geoenviron. Eng. 128 (10): 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
Ueng, T., and T. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Géotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
Vaid, Y. P., and S. Sasitharan. 1992. “The strength and dilatancy of sand.” Can. Geotech. J. 29 (3): 522–526. https://doi.org/10.1139/t92-058.
Wang, W., and M. R. Coop. 2016. “An investigation of breakage behaviour of single sand particles using a high-speed microscope camera.” Géotechnique 66 (12): 984–998. https://doi.org/10.1680/jgeot.15.P.247.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017a. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granular Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, Q. Chen, Q. Ma, Y. Xiang, and Y. Zheng. 2017b. “Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process.” Acta Geotech. 12 (5): 1177–1184. https://doi.org/10.1007/s11440-017-0580-y.
Xiao, Y., H. Liu, C. S. Desai, Y. Sun, and H. Liu. 2016a. “Effect of intermediate principal-stress ratio on particle breakage of rockfill material.” J. Geotech. Geoenviron. Eng. 142 (4): 06015017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001433.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016b. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., H. Liu, G. Yang, Y. Chen, and J. Jiang. 2014. “A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage.” Sci. China Technol. Sci. 57 (8): 1636–1646. https://doi.org/10.1007/s11431-014-5601-6.
Xiao, Y., L. Long, M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” Int. J. Geomech. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Yang, J., and L. M. Wei. 2012. “Collapse of loose sand with the addition of fines: The role of particle shape.” Géotechnique 62 (12): 1111–1125. https://doi.org/10.1680/geot.11.P.062.
Yao, Y. P., H. Yamamoto, and N. D. Wang. 2008. “Constitutive model considering sand crushing.” Soils Found. 48 (4): 603–608. https://doi.org/10.3208/sandf.48.603.
Yu, F. W. 2017a. “Characteristics of particle breakage of sand in triaxial shear.” Powder Technol. 320 (Oct): 656–667. https://doi.org/10.1016/j.powtec.2017.08.001.
Yu, F. W. 2017b. “Particle breakage and the critical state of sands.” Géotechnique 67 (8): 713–719. https://doi.org/10.1680/jgeot.15.P.250.
Yu, F. W. 2017c. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, F. W. 2017d. “Stress-dilatancy behavior of sand incorporating particle breakage.” Acta Geotech. Slovenica 14 (1): 55–61.
Yu, F. W. 2018a. “Particle breakage and the undrained shear behavior of sands.” Int. J. Geomech. 18 (7): 04018079. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001203.
Yu, F. W. 2018b. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Yu, F. W., and L. J. Su. 2016. “Particle breakage and the mobilized drained shear strengths of sand.” J. Mt. Sci. 13 (8): 1481–1488. https://doi.org/10.1007/s11629-016-3870-1.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 12December 2019

History

Received: Oct 15, 2018
Accepted: May 2, 2019
Published online: Oct 14, 2019
Published in print: Dec 1, 2019
Discussion open until: Mar 14, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Fangwei Yu, Ph.D. [email protected]
Assistant Professor, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Researcher, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Researcher, China-Pakistan Joint Research Center on Earth Sciences, Islamabad 45320, Pakistan; formerly, Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Tokyo, Tokyo 113-8656, Japan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share