Technical Papers
Jul 16, 2019

Numerical Analysis of Degradation Characteristics for Heterogeneous Rock under Coupled Thermomechanical Conditions

Publication: International Journal of Geomechanics
Volume 19, Issue 10

Abstract

The effects of high temperature on rock strength and deformation, and hence the integrity of rock structure, have been a significant issue for rock mechanics and engineering. This article adopts a coupled thermomechanical (TM) solution method to explore the deterioration characteristics of heterogeneous rock under TM conditions. Based on the combination of damage mechanics and plasticity, a coupled material model with consideration of yielding, the plastic flow rule, damage evolution, the thermal effect, and heterogeneity was implemented in a commercial explicit finite-element code, LS-DYNA, through a user-defined material subroutine. Validation simulations indicate that the proposed model is capable of reproducing the mechanical behaviors of rock under unconfined compression and heating conditions. The effects of the heating temperature and homogeneity index on the mechanical properties were also investigated. The results indicate that rock exhibits prominent ductility characteristics with an increase in temperature regardless of the homogeneity index. With the same heterogeneity, monotonic reductions in unconfined compressive strength (UCS) and Young’s modulus and an increase in peak strain were observed with an increase in the temperature. A single oblique fracture dominated the failure of the rock with lower homogeneity, whereas two conjugate fractures developed in the rock with more homogeneous strength.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41772309 and 41502283) and the China Postdoctoral Science Foundation (2017M622524).

References

Alonso, E. E., et al. 2005. “The FEBEX benchmark test: Case definition and comparison of modelling approaches.” Int. J. Rock Mech. Min. Sci. 42 (5–6): 611–638. https://doi.org/10.1016/j.ijrmms.2005.03.004.
Bauer, S. J., M. Friedman, and J. Handin. 1981. “Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPa and temperatures to partial melting.” In Proc., 22nd U.S. Symp. on Rock Mechanics. Alexandria, VA: American Rock Mechanics Association. https://doi.org/10.2172/5673638.
Brotóns, V., R. Tomás, S. Ivorra, and J. C. Alarcón. 2013. “Temperature influence on the physical and mechanical properties of a porous rock: San Julian's calcarenite.” Eng. Geol. 167 (SC): 117–127. https://doi.org/10.1016/j.enggeo.2013.10.012.
Chen, X., J. Yu, C. A. Tang, H. Li, and S. Y. Wang. 2017. “Experimental and numerical investigation of permeability evolution with damage of sandstone under triaxial compression.” Rock Mech. Rock Eng. 50 (6): 1529–1549. https://doi.org/10.1007/s00603-017-1169-3.
Chen, Y., C. Zhou, and L. Jing. 2010. “Numerical modeling of coupled thermo-mechanical response of a rock pillar.” J. Rock Mech. Geotech. Eng. 2 (3): 262–273. https://doi.org/10.3724/SP.J.1235.2010.00262.
Contreras, L. F., E. T. Brown, and M. Ruest. 2018. “Bayesian data analysis to quantify the uncertainty of intact rock strength.” J. Rock Mech. Geotech. Eng. 10 (1): 11–31. https://doi.org/10.1016/j.jrmge.2017.07.008.
Dai, F., P. Jiang, N. Xu, W. Chen, and Y. Tan. 2018. “Focal mechanism determination for microseismic events and its application to the left bank slope of the Baihetan hydropower station in China.” Environ. Earth Sci. 77 (7): 268. https://doi.org/10.1007/s12665-018-7443-1.
Dai, F., Y. Xu, T. Zhao, N-W. Xu, and Y. Liu. 2016. “Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests.” Int. J. Rock Mech. Min. Sci. 88: 49–60. https://doi.org/10.1016/j.ijrmms.2016.07.003.
David, E. C., N. Brantut, A. Schubnel, and R. W. Zimmerman. 2012. “Sliding crack model for nonlinearity and hysteresis in the uniaxial stress-strain curve of rock.” Int. J. Rock Mech. Min. Sci. 52: 9–17. https://doi.org/10.1016/j.ijrmms.2012.02.001.
dos Santos, J. P. L., L. G. Rosa, and P. M. Amaral. 2011. “Temperature effects on mechanical behaviour of engineered stones.” Constr. Build Mater. 25 (1): 171–174. https://doi.org/10.1016/j.conbuildmat.2010.06.042.
Dwivedi, R. D., R. K. Goel, V. V. R. Prasad, and A. Sinha. 2008. “Thermo-mechanical properties of Indian and other granites.” Int. J. Rock Mech. Min. Sci. 45 (3): 303–315. https://doi.org/10.1016/j.ijrmms.2007.05.008.
Fan, L. F., J. W. Gao, Z. J. Wu, S. Q. Yang, and G. W. Ma. 2018. “An investigation of thermal effects on micro-properties of granite by x-ray CT technique.” Appl. Therm. Eng. 140: 505–519. https://doi.org/10.1016/j.applthermaleng.2018.05.074.
Fan, L. F., Z. J. Wu, Z. Wan, and J. W. Gao. 2017. “Experimental investigation of thermal effects on dynamic behavior of granite.” Appl. Therm. Eng. 125: 94–103. https://doi.org/10.1016/j.applthermaleng.2017.07.007.
Fang, Z., and J. P. Harrison. 2002. “Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks.” Int. J. Rock Mech. Min. Sci. 39 (4): 443–457. https://doi.org/10.1016/S1365-1609(02)00035-7.
Ferrero, A. M., and P. Marini. 2001. “Experimental studies on the mechanical behaviour of two thermal cracked marbles.” Rock Mech. Rock Eng. 34 (1): 57–66. https://doi.org/10.1007/s006030170026.
Fox, D. B., D. Sutter, K. F. Beckers, M. Z. Lukawski, D. L. Koch, B. J. Anderson, and J. W. Tester. 2013. “Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs.” Geothermics 46: 42–54. https://doi.org/10.1016/j.geothermics.2012.09.001.
Glover, P. W. J., P. Baud, M. Darot, P. G. Meredith, S. A. Boon, M. Leravalec, S. Zoussi, and T. Reuschlé. 1995. “α/β phase transition in quartz monitored using acoustic emissions.” Geophys. J. Int. 120 (3): 775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x.
Gorgulu, K., Y. S. Duruturk, A. Demirci, and B. Poyraz. 2008. “Influences of uniaxial stress and moisture content on the thermal conductivity of rocks.” Int. J. Rock Mech. Min. Sci. 45 (8): 1439–1445. https://doi.org/10.1016/j.ijrmms.2008.02.004.
Grassl, P., and M. Jirásek. 2006. “Damage-plastic model for concrete failure.” Int. J. Solids Struct. 43 (22–23): 7166–7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032.
Grassl, P., M. Johansson, and J. Leppänen. 2018. “On the numerical modelling of bond for the failure analysis of reinforced concrete.” Eng. Fract. Mech. 189: 13–26. https://doi.org/10.1016/j.engfracmech.2017.10.008.
Grassl, P., D. Xenos, U. Nyström, R. Rempling, and K. Gylltoft. 2013. “CDPM2: A damage-plasticity approach to modelling the failure of concrete.” Int. J. Solids Struct. 50 (24): 3805–3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008.
Heuze, F. E. 1983. “High-temperature mechanical, physical and thermal-properties of granitic-rocks—A review.” Int. J. Rock Mech. Min. Sci. 20 (1): 3–10. https://doi.org/10.1016/0148-9062(83)91609-1.
Huang, S., and K. W. Xia. 2015. “Effect of heat-treatment on the dynamic compressive strength of Longyou sandstone.” Eng. Geol. 191: 1–7. https://doi.org/10.1016/j.enggeo.2015.03.007.
Kahraman, S., M. Fener, and O. Gunaydin. 2017. “Estimating the uniaxial compressive strength of pyroclastic rocks from the slake durability index.” B. Eng. Geol. Environ. 76 (3): 1107–1115. https://doi.org/10.1007/s10064-016-0893-3.
Kumari, W. G. P., P. G. Ranjith, M. S. A. Perera, and B. K. Chen. 2018. “Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: Thermal stimulation method for geothermal energy extraction.” J. Petrol. Sci. Eng. 162: 419–433. https://doi.org/10.1016/j.petrol.2017.12.033.
Kumari, W. G. P., P. G. Ranjith, M. S. A. Perera, S. Shao, B. K. Chen, A. Lashin, N. Al Arifi, and T. D. Rathnaweera. 2017. “Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction.” Geothermics 65: 44–59. https://doi.org/10.1016/j.geothermics.2016.07.002.
Lei, Q., and K. Gao. 2019. “A numerical study of stress variability in heterogeneous fractured rocks.” Int. J. Rock Mech. Min. Sci. 113: 121–133. https://doi.org/10.1016/j.ijrmms.2018.12.001.
Li, X. B., and L. Weng. 2016. “Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance.” Tunneling Underground Space Technol. 54: 61–72. https://doi.org/10.1016/j.tust.2016.01.028.
Liu, Y., and F. Dai. 2018. “A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression.” Int. J. Rock Mech. Min. Sci. 103: 289–301. https://doi.org/10.1016/j.ijrmms.2018.01.046.
LSTC (Livermore Software Technology Corporation). 2007. LS-DYNA keyword user’s manual, version 971. Livermore, CA: Livermore Software Technology Corporation.
Na, S., W. Sun, M. D. Ingraham, and H. Yoon. 2017. “Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos shale in Brazilian tests.” J. Geophys. Res. B: Solid Earth 122 (8): 6202–6230. https://doi.org/10.1002/2016JB013374.
Peng, J., L. N. Y. Wong, and C. I. Teh. 2017. “Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks.” J. Geophys. Res. B: Solid Earth 122 (2): 1054–1073. https://doi.org/10.1002/2016JB013469.
Rong, G., J. Peng, M. Cai, M. Yao, C. Zhou, and S. Sha. 2018. “Experimental investigation of thermal cycling effect on physical and mechanical properties of bedrocks in geothermal fields.” Appl. Therm. Eng. 141: 174–185. https://doi.org/10.1016/j.applthermaleng.2018.05.126.
Roy, D. G., and T. N. Singh. 2016. “Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition.” Rock Mech. Rock Eng. 49 (5): 1663–1677. https://doi.org/10.1007/s00603-015-0891-y.
Salimzadeh, S., A. Paluszny, H. M. Nick, and R. W. Zimmerman. 2018. “A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems.” Geothermics 71: 212–224. https://doi.org/10.1016/j.geothermics.2017.09.012.
Shao, S. S., P. G. Ranjith, P. L. P. Wasantha, and B. K. Chen. 2015. “Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy.” Geothermics 54: 96–108. https://doi.org/10.1016/j.geothermics.2014.11.005.
Siratovich, P. A., M. J. Heap, M. C. Villeneuve, J. W. Cole, B. M. Kennedy, J. Davidson, and T. Reuschlé. 2016. “Mechanical behaviour of the Rotokawa Andesites (New Zealand): Insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir.” Geothermics 64: 163–179. https://doi.org/10.1016/j.geothermics.2016.05.005.
Su, G. S., Z. Y. Chen, J. W. Ju, and J. Q. Jiang. 2017. “Influence of temperature on the strainburst characteristics of granite under true triaxial loading conditions.” Eng. Geol. 222: 38–52. https://doi.org/10.1016/j.enggeo.2017.03.021.
Sun, H., Q. Sun, W. N. Deng, W. Q. Zhang, and C. Lü. 2017. “Temperature effect on microstructure and P-wave propagation in Linyi sandstone.” Appl. Therm. Eng. 115: 913–922. https://doi.org/10.1016/j.applthermaleng.2017.01.026.
Tang, C. A., H. Liu, P. K. K. Lee, Y. Tsui, and L. G. Tham. 2000. “Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: effect of heterogeneity.” Int. J. Rock Mech. Min. Sci. 37 (4): 555–569. https://doi.org/10.1016/S1365-1609(99)00121-5.
Wang, S. Y., S. W. Sloan, D. C. Sheng, and C. A. Tang. 2016. “3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension.” Tectonophysics 677: 45–67. https://doi.org/10.1016/j.tecto.2016.03.042.
Wang, S. Y., S. W. Sloan, and C. A. Tang. 2014. “Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole.” Rock Mech. Rock Eng. 47 (6): 2117–2137. https://doi.org/10.1007/s00603-013-0512-6.
Wang, Z. L., and S. Y. Hao. 2017. “Study on dynamic compressive mechanical properties and failure modes of heat-treated granite.” Lat. Am. J. Solids Struct. 14 (4): 657–673. https://doi.org/10.1590/1679-78253342.
Wang, Z. L., A. L. He, G. Y. Shi, and G. X. Mei. 2018. “Temperature effect on AE energy characteristics and damage mechanical behaviors of granite.” Int. J. Geomech. 18 (3): 04017163. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001094.
Wawersik, W. R., and Hannum, D. W. 1980. “Mechanical behavior of New Mexico rock salt in triaxial compression up to 200°C.” J. Geophys. Res. 85 (B2): 891–900. https://doi.org/10.1029/JB085iB02p00891.
Wei, C. H., W. C. Zhu, Q. L. Yu, T. Xu, and S. Jeon. 2015. “Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters.” Int. J. Rock Mech. Min. Sci. 75: 169–181. https://doi.org/10.1016/j.ijrmms.2014.11.010.
Weng, L., L. Huang, A. Taheri, and X. Li. 2017. “Rockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, China.” Tunneling Underground Space Technol. 69: 223–232. https://doi.org/10.1016/j.tust.2017.05.011.
Wong, T-f, R. H. C. Wong, K. T. Chau, and C. A. Tang. 2006. “Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock.” Mech. Mater. 38 (7): 664–681. https://doi.org/10.1016/j.mechmat.2005.12.002.
Wu, Q., L. Weng, Y. Zhao, B. Guo, and T. Luo. 2019. “On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates.” Eng. Geol. 253: 94–110. https://doi.org/10.1016/j.enggeo.2019.03.014.
Xenos, D., and P. Grassl. 2016. “Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2.” Finite Elem. Anal. Des. 117: 11–20. https://doi.org/10.1016/j.finel.2016.04.002.
Xia, M. 2015. “Thermo-mechanical coupled particle model for rock.” Trans. Nonferrous Met. Soc. China 25 (7): 2367–2379. https://doi.org/10.1016/S1003-6326(15)63852-3.
Xu, Y., and F. Dai. 2018. “Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments.” Rock Mech. Rock Eng. 51 (3): 747–764. https://doi.org/10.1007/s00603-017-1364-2.
Xu, X. L., and Z. Z. Zhang. 2018. “Acoustic emission and damage characteristics of granite subjected to high temperature.” Adv. Mater. Sci. Eng. https://doi.org/10.1155/2018/8149870.
Xu, X. L., Z. X. Kang, M. Ji, W. X. Ge, and J. Chen. 2009. “Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature.” Procedia Earth Planet. Sci. 1 (1): 432–437. https://doi.org/10.1016/j.proeps.2009.09.069.
Yang, S. Q., W. L. Tian, and P. G. Ranjith. 2017. “Failure mechanical behavior of Australian Strathbogie granite at high temperatures: Insights from particle flow modeling.” Energies 10 (6): 756. https://doi.org/10.3390/en10060756.
Yin, T. B., X. B. Li, K. W. Xia, and S. Huang. 2012. “Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite.” Rock Mech. Rock Eng. 45 (6): 1087–1094. https://doi.org/10.1007/s00603-012-0240-3.
Yin, T. B., R. H. Shu, X. B. Li, P. Wang, and L. J. Dong. 2016a. “Combined effects of temperature and axial pressure on dynamic mechanical properties of granite.” Trans. Nonferrous Met. Soc. China 26 (8): 2209–2219. https://doi.org/10.1016/S1003-6326(16)64337-6.
Yin, T. B., R. H. Shu, X. B. Li, P. Wang, and X. L. Liu. 2016b. “Comparison of mechanical properties in high temperature and thermal treatment granite.” Trans. Nonferrous Met. Soc. China 26 (7): 1926–1937. https://doi.org/10.1016/S1003-6326(16)64311-X.
Yu, Q. L., P. G. Ranjith, H. Y. Liu, T. H. Yang, S. B. Tang, C. A. Tang, and S. Q. Yang. 2015. “A Mesostructure-Based Damage Model for Thermal Cracking Analysis and Application in Granite at Elevated Temperatures.” Rock Mech. Rock Eng. 48 (6): 2263–2282. https://doi.org/10.1007/s00603-014-0679-5.
Zhang, H. Q., S. Nunoo, D. D. Tannant, and S. Y. Wang. 2015. “Numerical study of the evolution of cohesion and internal friction in rock during the pre-peak deformation process.” Arab J. Geosci. 8 (6): 3501–3513. https://doi.org/10.1007/s12517-014-1508-6.
Zhang, L. Y., X. B. Mao, and A. H. Lu. 2009. “Experimental study on the mechanical properties of rocks at high temperature.” Sci. China Ser. E: Technol. Sci. 52 (3): 641–646. https://doi.org/10.1007/s11431-009-0063-y.
Zhang, Y. L., Q. Sun, H. He, L. W. Cao, W. Q. Zhang, and B. Wang. 2017. “Pore characteristics and mechanical properties of sandstone under the influence of temperature.” Appl. Therm. Eng. 113: 537–543. https://doi.org/10.1016/j.applthermaleng.2016.11.061.
Zhao, Y. S., Z. J. Wan, Z. J. Feng, D. Yang, Y. Zhang, and F. Qu. 2012. “Triaxial compression system for rock testing under high temperature and high pressure.” Int. J. Rock Mech. Min. Sci. 52: 132–138. https://doi.org/10.1016/j.ijrmms.2012.02.011.
Zhou, X. P., and J. Bi. 2018. “Numerical simulation of thermal cracking in rocks based on general particle dynamics.” J. Eng. Mech. 144 (1): 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378.
Zhou, X. P., and H. Q. Yang. 2017. “Dynamic damage localization in crack-weakened rock mass: Strain energy density factor approach.” Theor. Appl. Fract. Mech. 97: 289–302. https://doi.org/10.1016/j.tafmec.2017.05.006.
Zhu, W. C., Y. Bai, X. B. Li, and L. L. Niu. 2012. “Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests.” Int. J. Impact Eng. 49: 142–157. https://doi.org/10.1016/j.ijimpeng.2012.04.002.
Zhu, W. C., and C. A. Tang. 2004. “Micromechanical model for simulating the fracture process of rock.” Mech. Rock Eng. 37 (1): 25–56. https://doi.org/10.1007/s00603-003-0014-z.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 10October 2019

History

Received: Jul 17, 2018
Accepted: Mar 28, 2019
Published online: Jul 16, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 16, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Research Fellow, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. ORCID: https://orcid.org/0000-0002-2981-5110. Email: [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). Email: [email protected]
Quansheng Liu [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share