Technical Papers
Jul 16, 2019

Soil Hinges: Macroscopic Evidence and Modeling Considerations

Publication: International Journal of Geomechanics
Volume 19, Issue 10

Abstract

The mathematical structure of a constitutive model might be defined as the collection of variables that it contains and the symmetries, relationships, dependencies, and independencies that are involved. Finding a structure that is appropriate for modeling a particular set of behaviors is probably as important as finding the right formulae to use for the relationships within the structure. This study explored whether a structure similar to one used in steel frame plasticity might apply to soils. Ample evidence was found that it does, to a good approximation. Evidence included data of transversely isotropic linear elasticity, which appears to be exhibited by most soils and which can hamper accurate prediction of settlements or of dynamic responses using isotropic models. Evidence also included data on yield points and plastic flow. Both normality and deviations from normality were shown to be deducible as consequences of the operation of soil hinges. Hinges were shown to be consistent with the familiar concept of a state boundary that is different from a yield surface, and with critical and steady states.

Get full access to this article

View all available purchase options and get full access to this article.

References

Arthur, J. R. F., K. S. Chua, and T. Dunstan. 1977. “Induced anisotropy in a sand.” Géotechnique 27 (1): 13–30. https://doi.org/10.1680/geot.1977.27.1.13.
Arthur, J. R. F., and T. Menzies. 1972. “Inherent anisotropy in a sand.” Géotechnique 22 (1): 115–128. https://doi.org/10.1680/geot.1972.22.1.115.
Atkinson, J. H. 2000. “Non-linear soil stiffness in routine design.” Géotechnique 50 (5): 487–507. https://doi.org/10.1680/geot.2000.50.5.487.
Atkinson, J. H., and D. Richardson. 1985. “Elasticity and normality in soil-experimental examinations.” Géotechnique 35 (4): 443–449. https://doi.org/10.1680/geot.1985.35.4.443.
Atkinson, J. H., D. Richardson, and S. E. Stallebrass. 1990. “Effect of recent stress history on the stiffness of over-consolidated soil.” Géotechnique 40 (4): 531–540. https://doi.org/10.1680/geot.1990.40.4.531.
Baker, J., Sir, M. R. Horne, and. J. Heyman. 1956. The steel skeleton: Part 2, plastic behaviour and design. Cambridge, UK: Cambridge University Press.
Baker, R., and C. S. Desai. 1984. “Induced anisotropy during plastic straining.” Int. J. Numer. Anal. Methods Geomech. 8 (2): 167–185. https://doi.org/10.1002/nag.1610080206.
Been, K., Jefferies, and M. G. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Bellotti, R., M. Jamiolkowski, D. C. F. Lo Presti, and D. A. O’Neill. 1996. “Anisotropy of small strain stiffness in Ticino sand.” Géotechnique 46 (1): 115–131. https://doi.org/10.1680/geot.1996.46.1.115.
Berre, T. 1975. “Bruk av triaxial—og direkte skaer-försök till lösning av geotekniske problemer.” In Nordiska Goeteknikermötet i Köpenhamn. Oslo, Norway: Norwegian Geotechnical Institute.
Brown, S. F. 1976. “Discussion: Effect of cyclic loading on clay behaviour.” In Vol. 81 of Design and construction of offshore structures. London: Institution of Civil Engineers.
Burland, J. B. 1990. “On the compressibility and shear strength of natural clays.” Géotechnique 40 (3): 329–378. https://doi.org/10.1680/geot.1990.40.3.329.
Calladine, C. R. 1971. “Microstructural view of the mechanical properties of saturated clay.” Géotechnique 21 (4): 391–415. https://doi.org/10.1680/geot.1971.21.4.391.
Casagrande, A., and N. Carillo. 1944. “Shear failure of anisotropic materials.” Proc. Boston Soc. Civ. Eng. 31: 74–87.
Chu, J., and S.-C. Lo. 1994. “Asymptotic behaviour of a granular soil in strain path testing.” Géotechnique 44 (1): 65–82. https://doi.org/10.1680/geot.1994.44.1.65.
Collins, I. F., and G. T. Houlsby. 1997. “Application of thermomechanical principles to the modelling of geotechnical materials.” Proc. R. Soc Series A 453 (1964): 1975–2001. https://doi.org/10.1098/rspa.1997.0107.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Géotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Dafalias, Y. F., and L. R. Herrmann. 1980. “A bounding surface soil plasticity model.” In Proc., Int. Symp. Soils under Transient and Cyclic Loading, edited by G. N. Pande and O. C. Zienkiewicz, 335–345. Rotterdam, Netherlands: A. A. Balkema.
Darve, F. 1990. “The expression of rheological laws in incremental form and the main classes of constitutive equations.” Chap. 7 in Geomaterials: Constitutive equations and modelling, edited by F. Darve, 123–147. London: Elsevier.
Darve, F., and F. Louafa. 2002. “Constitutive equations and instabilities of granular materials.” Chap. 1 in Modelling and mechanics of granular and porous material, edited by G. Capriz, V. N. Ghionna, and P. Giovine, 3–44. Boston: Birkhäuser.
Das, B. M. 2009. Shallow foundations: Bearing capacity and settlement. Boca Raton, FL: CRC Press.
Davis, R. O., and A. P. S. Selvadurai. 1996. Elasticity and geomechanics. Cambridge, UK: Cambridge University Press.
Dean, E. T. R. 2001. “New descriptions of plane strain.” Géotechnique 51 (1): 15–36. https://doi.org/10.1680/geot.51.1.15.39358.
Dean, E. T. R. 2004. “New descriptions of stress, specific geometry, and strain in three dimensions.” Mech. Res. Commun. 31 (5): 577–591. https://doi.org/10.1016/j.mechrescom.2004.03.001.
Dean, E. T. R. 2015. “Particle mechanics approach to continuum constitutive modelling.” Geotech. Res. 2 (1): 3–34. https://doi.org/10.1680/gr.14.00018.
Díaz-Rodríguez, J. A., S. Leroueil, and J. D. Alemàn. 1992. “Yielding of Mexico City clay and other natural clays.” J. Geotech. Eng. 118 (7): 981–995. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:7(981).
Drucker, D. C. 1957. “A definition of stable inelastic material. Transactions of the ASME.” J. Appl. Mech. 26 (1): 101–106.
Efunda. 2018. “Hooke’s law: Orthotropic material.” Accessed June 3, 2018. http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/hooke_orthotropic.cfm.
Fioravante, V., D. Giretti, and M. Jamiolkowski. 2013. “Small strain stiffness of carbonate Kenya sand.” Eng. Geol. 161 (Jul): 65–80. https://doi.org/10.1016/j.enggeo.2013.04.006.
Gao, Y.-B. 2013. “Compression and extension yield of an anisotropically consolidated soil.” Soils Found. 53 (3): 431–442. https://doi.org/10.1016/j.sandf.2013.04.005.
Gasparre, A., S. Nishimura, A. Minh, M. R. Coop, and R. J. Jardine. 2007. “The stiffness of natural London clay.” Géotechnique 57 (1): 33–47. https://doi.org/10.1680/geot.2007.57.1.33.
Gautam, R., and R. C. K. Wong. 2006. “Transversely isotropic stiffness parameters and their measurement in Colorado shale.” Can. Geotech. J. 43 (12): 1290–1305. https://doi.org/10.1139/t06-083.
Gazetas, G. 1983. “Analysis of machine foundation vibrations: State of the art.” Int. J. Soil Dyn. Earthquake Eng. 2 (1): 2–42. https://doi.org/10.1016/0261-7277(83)90025-6.
Gens, A., and D. M. Potts. 1982. “A theoretical model for describing the behaviour of soils not obeying Rendulic’s principle.” In Proc., Int. Symp. Numerical Models in Geomechanics, 24–32. Rotterdam, Netherlands: A. A. Balkema.
Gibson, R. E. 1974. “The analytical method in soil mechanics.” Géotechnique 24 (2): 115–140. https://doi.org/10.1680/geot.1974.24.2.115.
Graham, J., J. H. A. Crooks, and S. L. K. Lau. 1988. “Yield envelopes: Identification and geometric properties.” Géotechnique 38 (1): 125–134. https://doi.org/10.1680/geot.1988.38.1.125.
Graham, J., and G. T. Houlsby. 1983. “Anisotropic elasticity of a natural clay.” Géotechnique 33 (2): 165–180. https://doi.org/10.1680/geot.1983.33.2.165.
Graham, J., M. L. Noonan, and K. V. Lew. 1983. “Yield states and stress-strain relationships in a natural plastic clay.” Can. Geotech. J. 20 (3): 502–516. https://doi.org/10.1139/t83-058.
Gu, X., J. Ho, and M. Huang. 2017. “Anisotropy of elasticity and fabric of granular soils.” Granular Media 19: 33. https://doi.org/10.1007/s10035-017-0717-6.
Hall, J. J. 1967. “Electronic effects in the elastic constants of n-type silicon.” Phys. Rev. 167: 756–761.
Hashiguchi, K., and M. Ueno. 1977. “Elastoplastic constitutive laws of granular materials.” In Proc., 9th Int. Conf. on Soil Mechanics and Foundation Engineering, Special Session 9, 73–82. Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering.
Hight, D. W., M. A. Paul, B. F. Barnes, J. J. M. Powell, D. F. T. Nash, P. R. Smith, R. J. Jardine, and D. H. Edwards. 2003. “The characterisation of the Bothkennar clay.” In Proc., Conf. on Characterisation and Engineering Properties of Natural Soils, edited by T. S. Tan, K. K. Phoon, D. W. Hight, and S. Leroue, 543–597. Lisse, Netherlands: A. A. Balkema.
Il’yushin, A. A. 1954. “On the relation between stresses and small deformations in the mechanics of continuous media.” [In Russian.] Prikladnaya Matematika I Mekanica 18: 641–666.
Jamiolkowski, M., R. Lancelotta, and D. C. F. Lo Presti. 1995. “Remarks on the stiffness at small strains of six Italian clays.” In Pre-failure deformations of granular materials, edited by S. Shibuya, T. Mitachi, and S. Miura, 817–836. Rotterdam, Netherlands: A. A. Balkema.
Jardine, R. J. 1992. “Some observations on the kinematic nature of soil stiffness.” Soils Found. 29 (3): 436–447.
Jardine, R. J., A. Gens, D. W. Hight, and M. Coop. 2004. “Developments in understanding soil behaviour.” In Proc., Advances in Geotechnical Engineering: The Skempton Conf., 103–206. London: Institution of Civil Engineers.
Jefferies, M. J., and K. Been. 2006. Soil liquefaction: A critical state approach. London: Taylor & Francis.
Kramer, S. L. 1996. Geotechnical earthquake engineering. Upper Saddle River, NJ: Prentice Hall.
Kuwano, R., and R. J. Jardine. 2007. “A triaxial investigation of kinematic yielding in sand.” Géotechnique 57 (7): 563–579. https://doi.org/10.1680/geot.2007.57.7.563.
Larrson, R. 1977. Basic behaviour of Scandinavian soft clays. Rep. No. 4, Linköping, Sweden: Swedish Geotechnical Institute.
Larsson, R., and G. Sällfors. 1981. “Hypothetical yield envelope at stress rotation.” In Vol. 1 of Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 693–696. Rotterdam, Netherlands: A. A. Balkema.
Lee, K. L., and H. B. Seed. 1967. “Drained strength characteristics of sands.” J. Soil Mech. Found. Div. 93 (6): 117–141.
Lees, A. 2016. Geotechnical finite element analysis. London: ICE Publishing.
Lensky, V. S. 1960. “Analysis of plastic behaviour of metals under complex loading.” In Proc., 2nd Symp. on Naval Structural Mechanics, edited by E. H. Lee and P. S. Symonds, 259–278. Oxford, UK: Pergamon.
Liao, J. J., and C. D. Wang. 1998. “Elastic solutions for a transversely isotropic half-space subjected to a point load.” Int. J. Numer. Anal. Methods Geomech. 22 (6): 425–447. https://doi.org/10.1002/(SICI)1096-9853(199806)22:6%3C425::AID-NAG925%3E3.3.CO;2-8.
Lings, M. L. 2001. “Drained and undrained anisotropic elastic stiffness parameters.” Géotechnique 51 (6): 555–565. https://doi.org/10.1680/geot.51.6.555.40463.
Lings, M. L., D. S. Pennington, and D. F. T. Nash. 2000. “Anisotropic stiffness parameters and their measurement in a stiff natural clay.” Géotechnique 50 (2): 109–125. https://doi.org/10.1680/geot.2000.50.2.109.
Lo, K. Y., G. A. Leonards, and C. Yuen. 1977. Interpretation and significance of anisotropic deformation behaviour of soft clays. Publication No. 117. Oslo, Norway: Norwegian Geotechnical Institute.
Loret, B. 1990. “Geomechanical applications of the theory of multimechanisms”. Chap. 9 in Geomaterials: Constitutive equations and modelling, edited by F. Darve, 187–211. London: Elsevier.
Love, A. E. H. 1927. A treatise on the mathematical theory of elasticity. 4th ed. Cambridge, UK: Cambridge University Press.
Mason, W. P. 1958. Physical acoustics and the properties of solids. Princeton, NJ: Van Nostrand.
Matsuoka, H., and D. Sun. 2006. The SMP concept-based 3D constitutive models for geomaterials. Boca Raton, FL: CRC Press.
Mayne, P. W., M. R. Coop, S. M. Springman, A.-B. Huang, and J. G. Zornberg. 2009. “Geomaterial behaviour and testing.” In Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering. Amsterdam, Netherlands: IOS Press.
Mesri, G., and B. Vardhanabhuti. 2005. “Secondary compression.” J. Geotech. Geoenviron. Eng. 131 (3): 398–401. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(398).
Mesri, G., and B. Vardhanabhuti. 2009. “Compression of granular materials.” Can. Geotech. J. 46 (4): 369–392. https://doi.org/10.1139/T08-123.
MIT (Massachusetts Institute of Technology). 2018. “Module 3: Constitutive equations.” Online part of the MIT Course on Structural Mechanics. Accessed June 3, 2018. http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf.
Mitchell, R. J. 1970. “On the yielding and mechanical strength of Leda clays.” Can. Geotech. J. 7 (3): 297–312. https://doi.org/10.1139/t70-036.
Nicot, F., J. Lerbet, and F. Darve. 2017. “Second-order work criterion: from material point to boundary value problems.” Acta Mech. 228 (7): 2483–2498. https://doi.org/10.1007/s00707-017-1844-1.
Noll, W. 1958. “A mathematical theory of the mechanical behavior of continuous media.” Arch. Ration. Mech. Anal. 2 (1): 197–226. https://doi.org/10.1007/BF00277929.
Onsager, L. 1931a. “Reciprocity relations in irreversible processes. I.” Phys. Rev. 37 (4): 405–426. https://doi.org/10.1103/PhysRev.37.405.
Onsager, L. 1931b. “Reciprocity relations in irreversible processes. II.” Phys. Rev. 38 (12): 2265–2279. https://doi.org/10.1103/PhysRev.38.2265.
Pande, G. N., and K. G. Sharma. 1983. “Multi‐laminate model of clays—A numerical evaluation of the influence of rotation of the principal stress axes.” Int. J. Numer. Anal. Methods Geomech. 7 (4): 397–418. https://doi.org/10.1002/nag.1610070404.
Pennington, D. S. 1999. “The anisotropic small strain stiffness of Cambridge Gault clay.” Ph.D. thesis, Univ. of Bristol.
Pennington, D. S., D. F. T. Nash, and M. L. Lings. 1997. “Anisotropy of G0 shear stiffness in Gault clay.” Géotechnique 47 (3): 391–398. https://doi.org/10.1680/geot.1997.47.3.391.
Pestana, J., and A. Whittle. 1995. “Compression model for cohesionless soils.” Géotechnique 45 (4): 611–631. https://doi.org/10.1680/geot.1995.45.4.611.
Pickering, D. J. 1970. “Anisotropic elastic parameters for soil.” Géotechnique 20 (3): 271–276. https://doi.org/10.1680/geot.1970.20.3.271.
Pietruszczak, S., and S. Krucinski. 1989. “Description of clay anisotropy employing the concept of directional porosity.” In Proc., 3rd Int. Conf. on Numerical Models in Geomechanics (NUMOG III), edited by S. Pietruszczak and G. N. Pande, 61–70. New York: Elsevier.
Piriyakul, K. 2006. “Anisotropic stress-strain behaviour of belgian boom clay in the small strain region.” Ph.D. thesis, Ghent Univ. Dept. of Civil Engineering.
Piriyakul, K., and W. Haegeman. 2006. “Anisotropic stiffness parameters for cross anisotropy of Kaolinite clay.” In Proc., 16th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 421–424. Amsterdam, Netherlands: IOS Press.
Poulos, H. G., and E. H. Davis. 1974. Elastic solutions for soil and rock mechanics. New York: Wiley.
Poulos, S. J. 1981. “The steady state of deformation.” J. Geotech. Eng. Div. 107 (5): 553–562.
Ramanatha Iyer, T. S. 1975. “The behavior of Drammen plastic clay under low effective stresses.” Can. Geotech. J. 12 (1): 70–83. https://doi.org/10.1139/t75-006.
Ratananikom, W., S. Likitlersuang, and S. Yimsiri. 2013. “An investigation of anisotropic elastic parameters of Bangkok clay from vertical and horizontal cut specimens.” Geomech. Geoeng. 8 (1): 15–27. https://doi.org/10.1080/17486025.2012.726746.
Raymond, G. P. 1970. “Discussion: Stresses and displacements in a cross-anisotropic soil.” Géotechnique 20 (4): 456–458.
Roscoe, K. H., and J. B. Burland. 1968. “On the generalised stress-strain behaviour of ‘wet’ clay.” In Engineering plasticity, edited by J. Heyman and F. A. Leckie, 535–608. Cambridge, UK: Cambridge University Press.
Sayers, C. M., and L. D. den Boer. 2016. “The elastic anisotropy of clay minerals.” Geophysics 81 (5): C193–C203. https://doi.org/10.1190/geo2016-0005.1.
Schofield, A. N., and S. Haigh. 2018. Disturbed soil properties and geotechnical design. London: ICE Publishing.
Schofield, A. N., and C. P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Scott, R. F. 1985. “Plasticity and constitutive relations in soil mechanics.” J. Geotech. Eng. 111 (5): 563–605. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:5(559).
Shaw, R. 2012. “Review of boom clay and opalinus clay parameters.” Euratom 7th Framework Programme Project: FORGE Rep. D4.6. Accessed May 15, 2019. https://www.bgs.ac.uk/downloads/start.cfm?id=3367 or via https://www.bgs.ac.uk/forge/reports.html.
Shi, J., S. Qian, L. L. Zeng, and X. Bian. 2015. “Influence of anisotropic consolidation stress paths on compression behaviour of reconstituted Wenzhou clay.” Géotechnique Lett. 5 (4): 275–280. https://doi.org/10.1680/jgele.15.00113.
Sone, H., and M. D. Zoback. 2013. “Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy.” Geophysics 78 (5): D381–D392. https://doi.org/10.1190/geo2013-0050.1.
Spencer, A. J. M. 1980. Continuum mechanics. Mineola, NY: Dover Publications.
Stokoe, K. H., II, J.-K. Lee, and S.-H. Lees. 1991. “Characterization of soil in calibration chambers with seismic waves.” In Calibration chamber testing, edited by A. B. Huang, 363–376. New York: Elsevier Science Publishing.
Tavenas, F., and S. Leroueil. 1979. “Clay behaviour and the selection of design parameters.” In Proc., VIIth European Conf. on Soil Mechanics and Foundation, 281–291. Brighton, UK: ECSMF.
Thomsen, L. 1986. “Weak elastic anisotropy.” Geophysics 51 (10): 1954–1966. https://doi.org/10.1190/1.1442051.
Topolnicki, M., G. Gudehus, and B. K. Mazurkiewicz. 1990. “Observed stress-strain behaviour of remoulded saturated clay under plane strain conditions.” Géotechnique 40 (2): 155–187. https://doi.org/10.1680/geot.1990.40.2.155.
Truesdell, C. 1977. A first course in rational continuum mechanics: General concepts. Cambridge, MA: Academic Press.
Tsvankin, I. 2001. Seismic signatures and analysis of reflection data in anisotropic media. Oxford, UK: Elsevier.
Vyzhva, S. A., G. T. Prodayvoda, and A. S. Vyzhva. 2014. “Elastic properties of some clay minerals.” Nafta-Gaz 70 (11): 743–756.
Wang, C. D. 2003. “Displacements and stresses due to vertical subsurface loading for a cross-anisotropic half-space.” Soils Found. 43 (5): 41–52. https://doi.org/10.3208/sandf.43.5_41.
Wong, P. K. K., and P. K. K. Wong. 1975. “Yielding and plastic flow of sensitive cemented clay.” Géotechnique 25 (4): 763–782. https://doi.org/10.1680/geot.1975.25.4.763.
Wong, R. C. K., D. R. Schmitt, D. Collis, and R. Gautam. 2008. “Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements.” J. Geophys. Eng. 5 (1): 103–117. https://doi.org/10.1088/1742-2132/5/1/011.
Wood, D. M. 1980. Laboratory investigations of the behaviour of soils under cyclic loading: A review. Technical Rep. CUED/D-Soils/TR 84. Cambridge, UK: Cambridge Univ. Engineering Dept.
Wroth, C. P., and G. T. Houlsby. 1985. “Soil mechanics – Property characterization and analysis procedures.” In Proc., 11th Int. Conf. on Soil Mechanics and Foundation Engineering (ICSMFE), 1–55. Rotterdam, Netherlands: A. A. Balkema.
Yamamuro, J. A., and V. A. Kaliakin, eds. 2005. Soil constitutive models: Evaluation, selection, and calibration. ASCE Geotechnical Special Publication No. 128. Reston, VA: ASCE.
Yang, Q., J.-M. Zhang, H. Zheng, and Y. Yao, eds. 2013. Constitutive modeling of geomaterials: Advances and new applications. Berlin: Springer.
Yimsiri, S., and K. Soga. 2011. “Cross-anisotropic elastic parameters of two natural stiff clays.” Géotechnique 61 (9): 809–814. https://doi.org/10.1680/geot.9.P.072.
Zdravkovic, L., and J. Carter. 2008. “Contributions to Géotechnique 1948–2008: Constitutive and numerical modelling.” Géotechnique 58 (5): 405–412. https://doi.org/10.1680/geot.2008.58.5.405.
Zhang, L., R. Barrett, P. Cloetens, C. Detlefs, and M. S. del Rio. 2014. “Anisotropic elasticity of silicon and its application to the modelling of X-ray optics.” J. Synchrotron Radiat. 21 (3): 507–517. https://doi.org/10.1107/S1600577514004962.
Zienkiewicz, O. C., and R. L. Taylor. 1994. Vol. 1 of The finite element method: Basic formulation and linear problems. 4th ed. New York: McGraw-Hill.
Zoback, M. D. 2010. Reservoir geomechanics. Cambridge, UK: Cambridge University Press.
Zwanenburg, C., and F. B. J. Barends. 2007. “The influence of anisotropic stiffness on the consolidation of peat.” Soils Found. 47 (3): 507–516. https://doi.org/10.3208/sandf.47.507.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 10October 2019

History

Received: Jul 25, 2018
Accepted: Mar 19, 2019
Published online: Jul 16, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 16, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Geotechnical Consultant, Caribbean Geotechnical Design Limited, L’Escala 17130, Spain. ORCID: https://orcid.org/0000-0002-0234-2261. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share