Technical Papers
Jun 18, 2019

Constitutive Modeling for Overconsolidated Clays Based on Disturbed State Concept. I: Theory

Publication: International Journal of Geomechanics
Volume 19, Issue 9

Abstract

The disturbed state concept (DSC) is widely used to capture the cracking, breaking, heating, softening, and hardening behaviors of geomaterials. In this study, a constitutive model for overconsolidated clays is proposed by incorporating the DSC. A new disturbance function describes the effect of the overconsolidation ratio (OCR) on the strength, dilatancy, and deformation of overconsolidated clays. This disturbance function is incorporated into the potential-failure and dilatancy stress ratios, potential-failure and dilatancy lines, and potential-failure and dilatancy surfaces at the current and referenced states. The plastic moduli also pertain to this disturbance function. With the assistance of this disturbance function, the proposed model can capture the strain hardening and volumetric contraction of normally consolidated or slightly overconsolidated clays, as well as the strain softening and volumetric expansion of highly overconsolidated clays under the drained condition. It can also capture the evolution of strength, excess pore pressure, and stress paths under the undrained condition.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge financial support from the 111 Project (Grant B13024), the National Natural Science Foundation of China (Grants 51678094, 51509024, and 51578096), and the China Postdoctoral Science Foundation (Grant 2017T100681).

References

Akhaveissy, A. H., C. S. Desai, S. A. Sadrnejad, and H. Shakib. 2009. “Implementation and comparison of generalized plasticity and disturbed state concept for load-deformation behavior of foundation.” Sci. Iran. J. Trans. A: Civ. Eng. 16 (3): 189–198.
Anandarajah, A., and Y. Dafalias. 1986. “Bounding surface plasticity. III: Application to anisotropic cohesive soils.” J. Eng. Mech. 112 (12): 1292–1318. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1292).
Atkinson, J. 2007. “Peak strength of overconsolidated clays.” Géotechnique 57 (2): 127–135. https://doi.org/10.1680/geot.2007.57.2.127.
Banerjee, P. K., and N. B. Yousif. 1986. “A plasticity model for the mechanical behaviour of anisotropically consolidated clay.” Int. J. Numer. Anal. Methods Geomech. 10 (5): 521–541. https://doi.org/10.1002/nag.1610100505.
Bardet, J. 1990. “Hypoplastic model for sands.” J. Eng. Mech. 116 (9): 1973–1994. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:9(1973).
Chen, Q., B. Indraratna, J. Carter, and C. Rujikiatkamjorn. 2014. “A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt.” Comput. Geotech. 61 (Sep): 316–327. https://doi.org/10.1016/j.compgeo.2014.06.010.
Chen, Q., B. Indraratna, J. P. Carter, and S. Nimbalkar. 2016. “Isotropic–kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space.” Can. Geotech. J. 53 (4): 646–658. https://doi.org/10.1139/cgj-2015-0166.
Dafalias, Y., A. Papadimitriou, and X. Li. 2004. “Sand plasticity model accounting for inherent fabric anisotropy.” J. Eng. Mech. 130 (11): 1319–1333. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319).
Desai, C. 2000. “Evaluation of liquefaction using disturbed state and energy approaches.” J. Geotech. Geoenviron. Eng. 126 (7): 618–631. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(618).
Desai, C. 2005. “Constitutive modeling for geologic materials: Significance and directions.” Int. J. Geomech. 5 (2): 81–84. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(81).
Desai, C. 2007. “Unified DSC constitutive model for pavement materials with numerical implementation.” Int. J. Geomech. 7 (2): 83–101. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(83).
Desai, C., S. Pradhan, and D. Cohen. 2005. “Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept.” Int. J. Geomech. 5 (4): 286–294. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:4(286).
Desai, C. S. 2001. Mechanics of materials and interfaces: The disturbed state concept. Boca Raton, FL: CRC Press.
Desai, C. S. 2015a. “Constitutive modeling of materials and contacts using the disturbed state concept: Part 1: Background and analysis.” Comput. Struct. 146 (Jan): 214–233. https://doi.org/10.1016/j.compstruc.2014.07.018.
Desai, C. S. 2015b. “Constitutive modeling of materials and contacts using the disturbed state concept: Part 2: Validations at specimen and boundary value problem levels.” Comput. Struct. 146 (Jan): 234–251. https://doi.org/10.1016/j.compstruc.2014.07.026.
Desai, C. S., and J. Toth. 1996. “Disturbed state constitutive modeling based on stress-strain and nondestructive behavior.” Int. J. Solids Struct. 33 (11): 1619–1650. https://doi.org/10.1016/0020-7683(95)00115-8.
Desai, C. S., and W. Zhang. 1998. “Computational aspects of disturbed state constitutive models.” Comput. Methods Appl. Mech. Eng. 151 (3–4): 361–376. https://doi.org/10.1016/S0045-7825(97)00159-X.
Fan, R.-D., M. Liu, Y.-J. Du, and S. Horpibulsuk. 2016. “Estimating the compression behaviour of metal-rich clays via a Disturbed State Concept (DSC) model.” Appl. Clay Sci. 132–133 (Nov): 50–58. https://doi.org/10.1016/j.clay.2016.05.014.
Gao, Z., J. Zhao, and Z. Yin. 2017. “Dilatancy relation for overconsolidated clay.” Int. J. Geomech. 17 (5): 06016035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000793.
Griffiths, F. J., and R. C. Joshi. 1988. “Identification of cementation in overconsolidated clays.” Géotechnique 38 (3): 451–452. https://doi.org/10.1680/geot.1988.38.3.451.
Hashiguchi, K. 1989. “Subloading surface model in unconventional plasticity.” Int. J. Solids Struct. 25 (8): 917–945. https://doi.org/10.1016/0020-7683(89)90038-3.
Jockovic, S., and M. Vukicevic. 2017. “Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule.” Comput. Geotech. 83 (Mar): 16–29. https://doi.org/10.1016/j.compgeo.2016.10.013.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Liang, R., and F. Ma. 1992a. “Anisotropic plasticity model for undrained cyclic behavior of clays. I: Theory.” J. Geotech. Engrg. 118 (2): 229–245. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(229).
Liang, R., and F. Ma. 1992b. “Anisotropic plasticity model for undrained cyclic behavior of clays. II: Verification.” J. Geotech. Engrg. 118 (2): 246–265. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(246).
Liu, E. L., and H. L. Xing. 2009. “A double hardening thermo-mechanical constitutive model for overconsolidated clays.” Acta Geotech. 4 (1): 1–6. https://doi.org/10.1007/s11440-008-0053-4.
Liu, M., J. Carter, and C. Desai. 2003. “Modeling compression behavior of structured geomaterials.” Int. J. Geomech. 3 (2): 191–204. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(191).
Liu, M. D., J. P. Carter, C. S. Desai, and K. J. Xu. 2000. “Analysis of the compression of structured soils using the disturbed state concept.” Int. J. Numer. Anal. Methods Geomech. 24 (8): 723–735. https://doi.org/10.1002/1096-9853(200007)24:8%3C723::AID-NAG92%3E3.0.CO;2-V.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Mita, K., G. Dasari, and K. Lo. 2004. “Performance of a three-dimensional Hvorslev–modified Cam clay model for overconsolidated clay.” Int. J. Geomech. 4 (4): 296–309. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(296).
Nakai, T., and M. Hinokio. 2004. “A simple elastoplastic model for normally and over consolidated soils with unified material parameters.” Soils Found. 44 (2): 53–70. https://doi.org/10.3208/sandf.44.2_53.
Pal, S., and W. Wathugala. 1999. “Disturbed state model for sand–geosynthetic interfaces and application to pull-out tests.” Int. J. Numer. Anal. Methods Geomech. 23 (15): 1873–1892. https://doi.org/10.1002/(SICI)1096-9853(19991225)23:15%3C1873::AID-NAG12%3E3.0.CO;2-K.
Pender, M. J. 1978. “A model for the behaviour of overconsolidated soil.” Géotechnique 28 (1): 1–25. https://doi.org/10.1680/geot.1978.28.1.1.
Pradhan, S., and C. Desai. 2006. “DSC model for soil and interface including liquefaction and prediction of centrifuge test.” J. Geotech. Geoenviron. Eng. 132 (2): 214–222. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(214).
Prashant, A., and D. Penumadu. 2004. “Effect of intermediate principal stress on overconsolidated kaolin clay.” J. Geotech. Geoenviron. Eng. 130 (3): 284–292. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:3(284).
Prashant, A., and D. Penumadu. 2015. “Uncoupled dual hardening model for clays considering the effect of overconsolidation and intermediate principal stress.” Acta Geotech. 10 (5): 607–622. https://doi.org/10.1007/s11440-015-0377-9.
Romero, E., M. V. Villar, and A. Lloret. 2005. “Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays.” Eng. Geol. 81 (3): 255–268. https://doi.org/10.1016/j.enggeo.2005.06.011.
Roscoe, K. H., A. N. Schofield, and A. Thurairajah. 1963. “Yielding of clays in states wetter than critical.” Géotechnique 13 (3): 211–240. https://doi.org/10.1680/geot.1963.13.3.211.
Roscoe, K. H., A. N. Schofield, and C. P. Wroth. 1958. “On the yielding of soils.” Géotechnique 8 (1): 22–53. https://doi.org/10.1680/geot.1958.8.1.22.
Sane, S. M., C. S. Desai, J. W. Jenson, D. N. Contractor, A. E. Carlson, and P. U. Clark. 2008. “Disturbed state constitutive modeling of two Pleistocene tills.” Quat. Sci. Rev. 27 (3–4): 267–283. https://doi.org/10.1016/j.quascirev.2007.10.003.
Schädlich, B., and H. F. Schweiger. 2014. “Modelling the shear strength of overconsolidated clays with a Hvorslev surface.” Geotechnik 37 (1): 47–56. https://doi.org/10.1002/gete.201300016.
Schofield, A. N., and C. P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Shao, C., and C. S. Desai. 2000. “Implementation of DSC model and application for analysis of field pile tests under cyclic loading.” Int. J. Numer. Anal. Methods Geomech. 24 (6): 601–624. https://doi.org/10.1002/(SICI)1096-9853(200005)24:6%3C601::AID-NAG85%3E3.0.CO;2-3.
Suebsuk, J., S. Horpibulsuk, and M. D. Liu. 2011. “A critical state model for overconsolidated structured clays.” Comput. Geotech. 38 (5): 648–658. https://doi.org/10.1016/j.compgeo.2011.03.010.
Taiebat, M., A. Kaynia, and Y. Dafalias. 2011. “Application of an anisotropic constitutive model for structured clay to seismic slope stability.” J. Geotech. Geoenviron. Eng. 137 (5): 492–504. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000458.
Wang, Z., Y. Dafalias, X. Li, and F. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Xiao, H., F. Lee, and Y. Liu. 2017a. “Bounding surface Cam-clay model with cohesion for cement-admixed clay.” Int. J. Geomech. 17 (1): 04016026. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000671.
Xiao, Y., and C. S. Desai. 2019. “Constitutive modeling for overconsolidated clays based on disturbed state concept. II: Validation.” Int. J. Geomech. 04019102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001475.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014a. “Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions.” J. Eng. Mech. 140 (4): 04014002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014b. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., H. Liu, Y. Chen, J. Jiang, and W. Zhang. 2015. “State-dependent constitutive model for rockfill materials.” Int. J. Geomech. 15 (5): 04014075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000421.
Xiao, Y., H. Liu, Y. Sun, and H. Liu. 2016. “Modeling of strength and deformation of overconsolidated clays based on bounding surface plasticity.” Sci. China Tech. Sci. 59 (9): 1452–1462. https://doi.org/10.1007/s11431-016-6088-0.
Xiao, Y., L. Long, T. Evans, H. Zhou, H. Liu, and A. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., Y. Sun, F. Yin, H. Liu, and J. Xiang. 2017b. “Constitutive modeling for transparent granular soils.” Int. J. Geomech. 17 (7): 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
Yao, Y., Z. Gao, J. Zhao, and Z. Wan. 2012. “Modified UH model: Constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope.” J. Geotech. Geoenviron. Eng. 138 (7): 860–868. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000649.
Yao, Y., S. Qu, Z. Yin, and E. Zhu. 2016. “SSUH model: A small-strain extension of the unified hardening model.” Sci. China Tech. Sci. 59 (2): 225–240. https://doi.org/10.1007/s11431-015-5914-0.
Yao, Y. P., W. Hou, and A. N. Zhou. 2008. “Constitutive model for overconsolidated clays.” Sci. China Ser. E: Technol. Sci. 51 (2): 179–191. https://doi.org/10.1007/s11431-008-0011-2.
Yao, Y. P., W. Hou, and A. N. Zhou. 2009. “UH model: Three-dimensional unified hardening model for overconsolidated clays.” Géotechnique 59 (5): 451–469. https://doi.org/10.1680/geot.2007.00029.
Yao, Y. P., L. M. Kong, and J. Hu. 2013. “An elastic-viscous-plastic model for overconsolidated clays.” Sci. China Tech. Sci. 56 (2): 441–457. https://doi.org/10.1007/s11431-012-5108-y.
Ye, G., B. Ye, and F. Zhang. 2014. “Strength and dilatancy of overconsolidated clays in drained true triaxial tests.” J. Geotech. Geoenviron. Eng. 140 (4): 06013006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001060.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 19Issue 9September 2019

History

Received: Jan 4, 2018
Accepted: Mar 15, 2019
Published online: Jun 18, 2019
Published in print: Sep 1, 2019
Discussion open until: Nov 18, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, Ph.D., M.ASCE [email protected]
Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China (corresponding author). Email: [email protected]
Chandrakant S. Desai, Ph.D., Dist.M.ASCE [email protected]
P.E.
Regents’ Professor Emeritus, Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona, Tucson, AZ 85721. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share