Technical Notes
Jul 25, 2018

BBM-Type Constitutive Model for Coupled Chemomechanical Behavior of Saturated Soils

Publication: International Journal of Geomechanics
Volume 18, Issue 10

Abstract

Many engineering problems, such as soil stabilization, nuclear waste storage, and oil and gas extraction, require understanding and modeling of the coupled chemomechanical behavior of soils. Based on the framework of the Barcelona basic model (BBM), a constitutive model (BBM-C) for addressing chemomechanical coupling behavior of saturated soil is proposed. By replacing matric suction with osmotic suction, the analogous yield function, hardening law, and flow rule are introduced for the BBM-C. This study also presents a parameter calibration method for the proposed constitutive model. To validate the BBM-C, three oedometer tests, in which the specimen was subjected to mechanical loading with constant osmotic suction, were used to calibrate the model parameters. Two other oedometer tests, including (1) mechanical loading at constant osmotic suction and (2) alternative chemical and mechanical loading, were used as blind tests to verify the proposed BBM-C with the calibrated model parameters. A comparison between experimental data and predicted results demonstrated that the BBM-C was able to capture the main features of the chemomechanical coupling behavior of saturated soil.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was supported by the National Science Foundation of China (11562007 and 51309055) and the Guangxi Natural Science Foundation (2017GXNSFAA198215).

References

Alonso, E. E., A. Gens, and A. Josa. 1990. “A constitutive model for partially saturated soils.” Géotechnique 40 (3): 405–430. https://doi.org/10.1680/geot.1990.40.3.405.
Alonso, E. E., S. Olivella, and N. M. Pinyol. 2005. “A review of Beliche Dam.” Géotechnique 55 (4): 267–285. https://doi.org/10.1680/geot.2005.55.4.267.
Anson, R. W. W., and A. B. Hawkins. 1998. “The effect of calcium ions in pore water on the residual shear strength of kaolinite and sodium montmorillonite.” Géotechnique 48 (6): 787–800. https://doi.org/10.1680/geot.1998.48.6.787.
Arasan, S., and T. Yetimoğlu. 2008. “Effect of inorganic salt solutions on the consistency limits of two clays.” Turk. J. Eng. Env. Sci. 32 (2): 107–115.
Barbour, S. L., and D. G. Fredlund. 1989. “Mechanisms of osmotic flow and volume change in clay soils.” Can. Geotech. J. 26 (4): 551–562. https://doi.org/10.1139/t89-068.
Bolt, G. H. 1956. “Physico-chemical analysis of the compressibility of pure clays.” Géotechnique 6 (2): 86–93. https://doi.org/10.1680/geot.1956.6.2.86.
Bolt, G. H., and R. D. Miller. 1955. “Compression studies of illite suspensions.” Soil Sci. Soc. Am. J. 19 (3): 285–288. https://doi.org/10.2136/sssaj1955.03615995001900030010x.
Calvello, M., M. Lasco, R. Vassallo, and C. Di Maio. 2005. “Compressibility and residual shear strength of smectitic clays: Influence of pore aqueous solutions and organic solvents.” Ital. Geotech. J. 1: 34–46.
Cekerevac, C., S. Girardin, G. Klubertanz, and L. Laloui. 2006. “Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure.” Comput. Geotech. 33 (8): 432–443. https://doi.org/10.1016/j.compgeo.2006.07.009.
Chapman, D. L. 1913. “A contribution to the theory of electrocapillarity.” London, Edinburgh, Dublin Philos. Mag. J. Sci. Ser. 6 25 (148): 475–481. https://doi.org/10.1080/14786440408634187.
Chen, J., A. Anandarajah, and H. Inyang. 2000. “Pore fluid properties and compressibility of kaolinite.” J. Geotech. Geoenviron. 126 (9): 798–807. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:9(798).
Deng, Y. F., X. B. Yue, Y. J. Cui, G. H. Shao, S. Y. Liu, and D. W. Zhang. 2014. “Effect of pore water chemistry on the hydro-mechanical behaviour of Lianyungang soft marine clay.” Appl. Clay Sci. 95: 167–175. https://doi.org/10.1016/j.clay.2014.04.007.
Di Maio, C. 1996. “Exposure of bentonite to salt solution: Osmotic and mechanical effects.” Géotechnique 46 (4): 695–707. https://doi.org/10.1680/geot.1996.46.4.695.
Di Maio, C., and G. B. Fenelli. 1997. “Influenza delle interazioni chimico-fisiche sulla deformabilita di alcuni terreni argillosi.” Riv. Ital. Geotec. 1: 695–707.
D’onza, F, et al. 2015. “Benchmarking selection of parameter values for the Barcelona basic model.” Eng. Geol. 196: 99–118. https://doi.org/10.1016/j.enggeo.2015.06.022.
Estabragh, A. R., I. Beytolahpour, M. Moradi, and A. A. Javadi. 2014. “Consolidation behavior of two fine-grained soils contaminated by glycerol and ethanol.” Eng. Geol. 178 (8): 102–108. https://doi.org/10.1016/j.enggeo.2014.05.017.
Estabragh, A. R., I. Beytolahpour, M. Moradi, and A. A. Javadi. 2016. “Mechanical behavior of a clay soil contaminated with glycerol and ethanol.” Eur. J. Environ. Civ. Eng. 20 (5): 503–519. https://doi.org/10.1080/19648189.2015.1047900.
Ewy, R. T. 2014. “Shale swelling/shrinkage and water content change due to imposed suction and due to direct brine contact.” Acta Geotech. 9 (5): 869–886. https://doi.org/10.1007/s11440-013-0297-5.
Fredlund, D. G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. New Delhi, India: John Wiley & Sons.
Gajo, A., and B. Loret. 2003. “Finite element simulations of chemo-mechanical coupling in elastic-plastic homoionic expansive clays.” Comput. Methods Appl. Mech. Eng. 192 (31–32): 3489–3530. https://doi.org/10.1016/S0045-7825(03)00355-4.
Gajo, A., B. Loret, and T. Hueckel. 2002. “Electro-chemo-mechanical couplings in saturated porous media: Elastic-plastic behaviour of heteroionic expansive clays.” Int. J. Solids Struct. 39 (16): 4327–4362. https://doi.org/10.1016/S0020-7683(02)00231-7.
Gallipoli, D., F. D’Onza, and S. J. Wheeler. 2010. “A sequential method for selecting parameter values in the Barcelona basic model.” Can. Geotech. J. 47 (11): 1175–1186. https://doi.org/10.1139/T10-017.
Gens, A. 2010. “Soil-environment interactions in geotechnical engineering.” Géotechnique 60 (1): 3–74. https://doi.org/10.1680/geot.9.P.109.
Gens, A., M. Sánchez, and D. Sheng. 2006. “On constitutive modelling of unsaturated soils.” Acta Geotech. 1 (3): 137–147. https://doi.org/10.1007/s11440-006-0013-9.
Gouy, G. 1910. “Constitution of the electric charge at the surface of an electrolyte.” J. Physique 9 (1): 457–467. https://doi.org/10.1051/jphystap:019100090045700.
Guimarães, L. D. N., A. Gens, M. Sánchez, and S. Olivella. 2013. “A chemo-mechanical constitutive model accounting for cation exchange inexpansive clays.” Géotechnique 63 (3): 221–234. https://doi.org/10.1680/geot.SIP13.P.012.
Hujeux, J. C. 1979. “Calcul numerique de problemes de consolidation elastoplastique.” Ph.D. thesis, Ecole Centrale de Paris.
Laloui, L., M. Nuth, and B. Francois. 2010. Mechanics of unsaturated geomaterials: Mechanics of unsaturated soils. Hoboken, NJ: John Wiley & Sons.
Liu, C., S. K. Hoang, M. H. Tran, Y. N. Abousleiman, and R. T. Ewy. 2017. “Poroelastic dual-porosity dual-permeability simulation of pressure transmission test on chemically active shale.” J. Eng. Mech. 143 (6): 04017016. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001210.
Loret, B., T. Hueckel, and A. Gajo. 2002. “Chemo-mechanical coupling in saturated porous media: Elastic-plastic behaviour of homoionic expansive clays.” Int. J. Solids Struct. 39 (10): 2773–2806. https://doi.org/10.1016/S0020-7683(02)00151-8.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. Denver: Wiley.
Ma, T., C. Wei, H. Wei, and W. Li. 2016a. “Hydraulic and mechanical behavior of unsaturated silt: Experimental and theoretical characterization.” Int. J. Geomech. 16 (6): D4015007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000576.
Ma, T., C. Wei, X. Xia, and P. Chen. 2016b. “Constitutive model of unsaturated soils considering the effect of intergranular physicochemical forces.” J. Eng. Mech. 142 (11): 04016088. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001146.
Marine, I. W., and S. J. Fritz. 1981. “Osmotic model to explain anomalous hydraulic heads.” Water Resour. Res. 17 (1): 73–82. https://doi.org/10.1029/WR017i001p00073.
Mata, C., E. Romero, and A. Ledesma. 2002. “Hydro-chemical effects on water retention in bentonite-sand mixtures.” In Vol. 1 of Proc., 3th Int. Conf. on Unsaturated Soils, edited by J. F. T. Juco, T. M. P. De Campas, and F. A. M. Marinho, 283–288. Rotterdam, Nertherlands: A.A. Belkema.
Nguyen, X. P., Y. J. Cui, A. M. Tang, Y. F. Deng, X. L. Li, and L. Wouters. 2013. “Effects of pore water chemical composition on the hydro-mechanical behavior of natural stiff clays.” Eng. Geol. 166: 52–64. https://doi.org/10.1016/j.enggeo.2013.08.009.
Patil, U. D., L. R. Hoyos, and A. J. Puppala. 2016. “Modeling essential elastoplastic features of compacted silty sand via suction-controlled triaxial testing.” Int. J. Geomech. 16 (6): D4016012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000726.
Rao, S. M., and K. Revanasiddappa. 2000. “Role of matric suction in collapse of compacted clay soil.” J. Geotech. Geoenviron. 126 (1): 85–90. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(85).
Rao, S. M., and K. Revanasiddappa. 2002. “Collapse behaviour of a residual soil.” Géotechnique 52 (4): 259–268. https://doi.org/10.1680/geot.2002.52.4.259.
Rao, S. M., and P. Shivananda. 2005. “Role of osmotic suction in swelling of salt amended clays.” Can. Geotech. J. 42 (1): 307–315. https://doi.org/10.1139/t04-086.
Rao, S. M., and T. Thyagaraj. 2007. “Swell–compression behaviour of compacted clays under chemical gradients.” Can. Geotech. J. 44 (5): 520–532. https://doi.org/10.1139/t07-002.
Rao, S. S. 2009. Engineering optimization: Theory and practice. Hoboken, New Jersey: John Wiley & Sons, Inc.
Sheng, D., S. W. Sloan, and A. Gens. 2004. “A constitutive model for unsaturated soils: Thermomechancial and computational aspects.” Comput. Mech. 33 (6): 453–465. https://doi.org/10.1007/s00466-003-0545-x.
Sheng, D., S. W. Sloan, A. Gens, and D. W. Smith. 2003a. “Finite element formulation and algorithms for unsaturated soils. Part I: Theory.” Int. J. Numer. Anal. Methods Geomech. 27 (9): 745–765. https://doi.org/10.1002/nag.295.
Sheng, D., D. W. Smith, S. W Sloan, and A. Gens. 2003b. “Finite element formulation and algorithms for unsaturated soils. Part II: Verification and application.” Int. J. Numer. Anal. Methods Geomech. 27 (9): 767–790. https://doi.org/10.1002/nag.296.
Sun, D. A., D. Sheng, L. Xiang, and S. W. Sloan. 2008. “Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions.” Comput. Geotech. 35 (6): 845–852. https://doi.org/10.1016/j.compgeo.2008.08.002.
Thyagaraj, T., S. R. Thomas, and A. P. Das. 2017. “Physico-chemical effects on shrinkage behavior of compacted expansive clay.” Int. J. Geomech. 17 (2): 06016013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000698.
Wahid, A. S., A. Gajo, and R. Di Maggio. 2011a. “Chemo-mechanical effects in kaolinite. Part 1: Prepared samples.” Géotechnique 61 (6): 439–447. https://doi.org/10.1680/geot.8.P.067.
Wahid, A. S., A. Gajo, and R. Di Maggio. 2011b. “Chemo-mechanical effects in kaolinite. Part 2: Exposed samples and chemical and phase analyses.” Géotechnique 61 (6): 49–547. https://doi.org/10.1680/geot.8.P.068.
Wang, Y. H., and W. K. Siu. 2006. “Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations.” Can. Geotech. J. 43 (6): 587–600. https://doi.org/10.1139/t06-026.
Wheeler, S. J., and D. Karube. 1996. “State of the art report-constitutive modeling.” In Vol. 3 of Proc., 1st Int. Conf. on Unsaturated Soils, edited by E. E. Alonso and P. Delage, 1323–1356. Rotterdam, Nertherlands: A. A. Belkema.
Witteveen, P., A. Ferrari, and L. Laloui. 2013. “An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay.” Géotechnique 63 (3): 244–255. https://doi.org/10.1680/geot.SIP13.P.027.
Xu, Y., G. Xiang, H. Jiang, T. Chen, and F. Chu. 2014. “Role of osmotic suction in volume change of clays in salt solution.” Appl. Clay Sci. 101: 354–361. https://doi.org/10.1016/j.clay.2014.09.006.
Ye, W. M., F. Zhang, B. Chen, Y. G. Chen, Q. Wang, and Y. J. Cui. 2014. “Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 bentonite.” Environ. Earth Sci. 72 (7): 2621–2630. https://doi.org/10.1007/s12665-014-3169-x.
Zhang, X., E. E. Alonso, and F. Casini. 2016. “Explicit formulation of at-rest coefficient and its role in calibrating elasto-plastic models for unsaturated soils.” Comput. Geotech. 71: 56–68. https://doi.org/10.1016/j.compgeo.2015.08.012.
Zhang, X., and R. L. Lytton. 2009a. “Modified state-surface approach to the study of unsaturated soil behavior. Part I: Basic concept.” Can. Geotech. J. 46 (5): 536–552. https://doi.org/10.1139/T08-136.
Zhang, X., and R. L. Lytton. 2009b. “Modified state-surface approach to the study of unsaturated soil behavior. Part II: General formulation.” Can. Geotech. J. 46 (5): 553–570. https://doi.org/10.1139/T08-137.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 18Issue 10October 2018

History

Received: Sep 13, 2017
Accepted: Apr 13, 2018
Published online: Jul 25, 2018
Published in print: Oct 1, 2018
Discussion open until: Dec 25, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Rongtao Yan, Ph.D. [email protected]
Associate Professor, Guangxi Key Laboratory of New Energy and Building Energy Saving, College of Civil Engineering and Architecture, Guilin Univ. of Technology, 12 Jiangan Rd., Guilin, Guangxi 541004, People’s Republic of China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share