Technical Papers
Aug 7, 2018

Review of the Relationships between Crack Initiation Stress, Mode I Fracture Toughness and Tensile Strength of Geo-Materials

Publication: International Journal of Geomechanics
Volume 18, Issue 10

Abstract

It has been accepted that, in geo-materials, almost all the cracks forming at final failure in the tension test and those occurring at the crack initiation (CI) and crack propagation stages in the compression test are tensile cracks. Because of this, tensile strength is attracting more attention. Compared with the experiment for obtaining tensile strength, the results obtained from a CI stress experiment are inaccurate for the subjective judgments of the user, and the results obtained from the fracture toughness test show a rather large variation of 30–50%. A review was conducted to determine the relationships among CI stress, Mode I fracture toughness, and tensile strength from the view of the failure mechanism and the data gathered from the available literature. It was found that CI stress has a linear relationship with Brazilian tensile strength with the linear coefficient of 0.075, and the linear coefficient between Mode I fracture toughness and tensile strength is in the range of 0.1–0.15, although both correlation coefficients are at a low level. The relationships can be the basis for preliminary design purposes and for rock classification and characterization. It is suggested that the shape of the sample for testing should be consistent and the methods for obtaining each property should be standardized, and more data are needed for further study.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Grant 51174020) and High Speed Railway Joint Fund of National Natural Science Foundation of China (U1434211).

References

Akazawa, T. 1943. “New test method for evaluating internal stress due to compression of concrete (the splitting tension test)(part 1).” J. Jpn. Soc. Civ. Eng. 29: 777–787.
Anderson, T. L., and T. Anderson. 2005. Fracture mechanics: Fundamentals and applications. Boca Raton, FL: CRC Press.
Andersson, J., et al. 2007. Olkiluoto site description 2006. Posiva 2007-03. Olkiluoto, Finland: Posiva Oy Olkiluoto.
Andersson, J. C., C. D. Martin, and H. Stille. 2009. “The Äspö pillar stability experiment: Part II—rock mass response to coupled excavation-induced and thermal-induced stresses.” Int. J. Rock Mech. Min. Sci. 46 (5): 879–895. https://doi.org/10.1016/j.ijrmms.2009.03.002.
Ashby, M., and C. Sammis. 1990. “The damage mechanics of brittle solids in compression.” Pure Appl. Geophys. 133 (3): 489–521. https://doi.org/10.1007/BF00878002.
Atkinson, C., R. Smelser, and J. Sanchez. 1982. “Combined mode fracture via the cracked Brazilian disk test.” Int. J. Fract. 18 (4): 279–291.
Awaji, H., and S. Sato. 1978. “Combined mode fracture toughness measurement by the disk test.” J. Eng. Mater. Technol. 100 (2): 175–182. https://doi.org/10.1115/1.3443468.
Ayatollahi, M. R., E. Mahdavi, M. J. Alborzi, and Y. Obara. 2016. “Stress intensity factors of semi-circular bend specimens with straight-through and chevron notches.” Rock Mech. Rock Eng. 49 (4): 1161–1172. https://doi.org/10.1007/s00603-015-0830-y.
Barry, N. W., N. S. Raghu, and S. Gexin. 1992. Rock fracture mechanics principles design and applications. Amsterdam, Netherlands: Elsevier.
Bhagat, R. B. 1985. “Mode I fracture toughness of coal.” Int. J. Min. Eng. 3 (3): 229–236. https://doi.org/10.1007/BF00880769.
Bieniawski, Z. 1967a. “Mechanism of brittle fracture of rock: Part I—Theory of the fracture process.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (4): 395–406. https://doi.org/10.1016/0148-9062(67)90030-7.
Bieniawski, Z. 1967b. “Mechanism of brittle fracture of rock: Part II—Experimental studies.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (4): 407–423. https://doi.org/10.1016/0148-9062(67)90031-9.
Bieniawski, Z. 1967c. “Mechanism of brittle fracture of rock: Part III—Fracture in tension and under long-term loading.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 4 (4): 425–430. https://doi.org/10.1016/0148-9062(67)90032-0.
Brace, W., B. Paulding, and C. Scholz. 1966. “Dilatancy in the fracture of crystalline rocks.” J. Geophys. Res. 71 (16): 3939–3953. https://doi.org/10.1029/JZ071i016p03939.
Brace, W. F. 1963. Brittle fracture of rocks. Cambridge, MA: Massachusetts Institute of Technology, Industrial Liaison Program.
Carneiro, F. 1943. “A new method to determine the tensile strength of concrete.” In Proc., 5th Meeting of the Brazilian Association for Technical Rules, 3d. Section, 126–129. Brazil: Àssociaçaõ Brasileire de Normas Técnicas—ABNT.
Chen, C.-H., C.-S. Chen, and J.-H. Wu. 2008. “Fracture toughness analysis on cracked ring disks of anisotropic rock.” Rock Mech. Rock Eng. 41 (4): 539–562. https://doi.org/10.1007/s00603-007-0152-9.
Cho, N. A., C. Martin, and D. Sego. 2007. “A clumped particle model for rock.” Int. J. Rock Mech. Min. Sci. 44 (7): 997–1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
Chong, K., and M. Kuruppu. 1984. “New specimen for fracture toughness determination for rock and other materials.” Int. J. Fract. 26 (2): R59–R62. https://doi.org/10.1007/BF01157555.
Coviello, A., R. Lagioia, and R. Nova. 2005. “On the measurement of the tensile strength of soft rocks.” Rock Mech. Rock Eng. 38 (4): 251–273. https://doi.org/10.1007/s00603-005-0054-7.
Cundall, P., D. Potyondy, and C. Lee. 1996. “Micromechanics-based models for fracture and breakout around the mine-by tunnel.” In Proc., Int. Conf. on Deep Geological Disposal of Radioactive Waste, edited by J. B. Martino and C. D. Martin, 113–122. Toronto: Canadian Nuclear Society.
Dai, F., M. Wei, N. Xu, Y. Ma, and D. Yang. 2015. “Numerical assessment of the progressive rock fracture mechanism of cracked chevron notched Brazilian disc specimens.” Rock Mech. Rock Eng. 48 (2): 463–479. https://doi.org/10.1007/s00603-014-0587-8.
Dai, F., and K. Xia. 2013. “Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite.” Int. J. Rock Mech. Min. Sci. 60 (Jun): 57–65. https://doi.org/10.1016/j.ijrmms.2012.12.035.
Dai, F., K. Xia, H. Zheng, and Y. Wang. 2011. “Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen.” Eng. Fract. Mech. 78 (15): 2633–2644. https://doi.org/10.1016/j.engfracmech.2011.06.022.
Dai, F., K. Xia, and S. N. Luo. 2008. “Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids.” Rev. Sci. Instrum. 79 (12): 123903. https://doi.org/10.1063/1.3043420.
Diederichs, M. 2003. “Manuel Rocha medal recipient rock fracture and collapse under low confinement conditions.” Rock Mech. Rock Eng. 36 (5): 339–381. https://doi.org/10.1007/s00603-003-0015-y.
Diederichs, M. S. 1999. “Instability of hard rockmasses: The role of tensile damage and relaxation.” Ph.D. thesis, Univ. of Waterloo.
Diederichs, M. S. 2007. “The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling.” Can. Geotech. J. 44 (9): 1082–1116. https://doi.org/10.1139/T07-033.
Eberhardt, E., D. Stead, B. Stimpson, and R. Read. 1998. “Identifying crack initiation and propagation thresholds in brittle rock.” Can. Geotech. J. 35 (2): 222–233. https://doi.org/10.1139/t97-091.
Erarslan, N., Z. Z. Liang, and D. J. Williams. 2012. “Experimental and numerical studies on determination of indirect tensile strength of rocks.” Rock Mech. Rock Eng. 45 (5): 739–751.
Erarslan, N., and D. J. Williams. 2012. “Experimental, numerical and analytical studies on tensile strength of rocks.” Int. J. Rock Mech. Min. Sci. 49 (Jan): 21–30. https://doi.org/10.1016/j.ijrmms.2011.11.007.
Fairhurst, C. 1961. “Laboratory measurement of some physical properties of rock.” In Proc., 4th US Symp. on Rock Mechanics (USRMS), 105–118. Alexandria, VA: American Rock Mechanics Association.
Fowell, R. 1995. “Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32 (1): 57–64. https://doi.org/10.1016/0148-9062(94)00015-U.
Franklin, J. A., and M. B. Dusseault. 1991. Rock engineering applications. New York: McGraw-Hill.
Franklin, J., et al. 1988. “Suggested methods for determining the fracture toughness of rock.” Int. J. Rock Mech. Min. Geomech. Abstr. 25 (2): 17–96. https://doi.org/10.1016/0148-9062(88)91207-7.
Ghazvinian, E., M. Diederichs, and J. Archibald. 2011. “Challenges related to standardized detection of crack initiation thresholds for lower-bound or ultra-long-term strength prediction of rock.” In Proc., Pan-Am CGS Geotechnical Conf. Richmond, BC, Canada: Canadian Geotechnical Society.
Gorski, B., T. Anderson, and B. Conlon. 2009. Laboratory geomechanical strength testing of DGR-1 and DGR-2 core. TR-07-03. Ottawa: CANMET Mining and Mineral Sciences Laboratories, Natural Resources Canada.
Gorski, B., T. Anderson, and B. Conlon. 2010. Long-term strength degradation testing of DGR-3 and DGR-4 core. TR-08-36. Ottawa: CANMET Mining and Mineral Sciences Laboratories, Natural Resources Canada.
Gorski, B., T. Anderson, and B. Conlon. 2011. DGR site characterization document. TR-09-07. Ottawa: CANMET Mining and Mineral Sciences Laboratories, Natural Resources Canada.
Gorski, B., T. Anderson, and B. Conlon. 2014. DGR site characterization document. TR-08-11. Ottawa: CANMET Mining and Mineral Sciences Laboratories, Natural Resources Canada.
Griffith, A. 1921. “The phenomena of flow and rupture in solids.” Philos. Trans. R. Soc. Lond. Ser. A 221 (582–593): 163–198. https://doi.org/10.1098/rsta.1921.0006.
Griffith, A. 1924. “Theory of rupture.” In Proc., 1st Int. Congress of Applied Mechanics, edited by J. Waltman, 55–63. Delft, Netherlands: Tech. Boekhandel en Drukkerij J. Walter Jr.
Gunsallus, K. T., and F. Kulhawy. 1984. “A comparative evaluation of rock strength measures.” Int. J. Rock Mech. Min. Sci. Geomech. 21 (5): 233–248. https://doi.org/10.1016/0148-9062(84)92680-9.
Guo, H., N. Aziz, and L. Schmidt. 1993. “Rock fracture-toughness determination by the Brazilian test.” Eng. Geol. 33 (3): 177–188. https://doi.org/10.1016/0013-7952(93)90056-I.
Haberfield, C., and I. Johnston. 1989. “Relationship between fracture toughness and tensile strength for geomaterials.” In Vol. 1 of Proc., 12th Int. Conf. on Soil Mechanics and Foundation Engineering, 47–52. Rotterdam, Netherlands: AA Balkema.
Haimson, B., and F. Cornet. 2003. “ISRM suggested methods for rock stress estimation—Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF).” Int. J. Rock Mech. Min. Sci. 40 (7): 1011–1020. https://doi.org/10.1016/j.ijrmms.2003.08.002.
Hajiabdolmajid, V., P. Kaiser, and C. Martin. 2002. “Modelling brittle failure of rock.” Int. J. Rock Mech. Min. Sci. 39 (6): 731–741. https://doi.org/10.1016/S1365-1609(02)00051-5.
Hajiabdolmajid, V. R. 2002. “Mobilization of strength in brittle failure of rock.” Ph.D. thesis, Queen’s Univ.
Hanson, J., B. Hardin, and K. Mahboub. 1994. “Fracture toughness of compacted cohesive soils using ring test.” J. Geotech. Engrg. 120 (5): 872–891. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(872).
Healy, D., R. R. Jones, and R. E. Holdsworth. 2006. “Three-dimensional brittle shear fracturing by tensile crack interaction.” Nature 439 (7072): 64–67. https://doi.org/10.1038/nature04346.
Hobbs, D. 1965. “An assessment of a technique for determining the tensile strength of rock.” Br. J. Appl. Phys. 16 (2): 259. https://doi.org/10.1088/0508-3443/16/2/319.
Hoek, E. 1964. “Fracture of anisotropic rock.” J. S. Afr. Inst. Min. Metall. 64 (10): 501–523.
Hoek, E., and Z. Bieniawski. 1966. “Fracture propagation mechanism in hard rock.” In Proc., 1st ISRM Congress, 243–249. Lisbon, Portugal: International Society for Rock Mechanics.
Hoek, E., and E. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Hoek, E., and E. Brown. 1980. “Empirical strength criterion for rock masses.” J. Geotech. Geoenviron. Engrg. Div. 106: 1013–1035.
Hoek, E., C. Carranza-Torres, and B. Corkum. 2002. “Hoek-Brown failure criterion—2002 edition.” In Vol. 1 of Proc., 5th NARMS-TAC, 267–273. Toronto: University of Toronto Press.
Hoek, E., and C. Martin. 2014. “Fracture initiation and propagation in intact rock–a review.” J. Rock Mech. Geotech. Eng. 6 (4): 287–300. https://doi.org/10.1016/j.jrmge.2014.06.001.
Hondros, G. 1959. “The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete.” Austr. J. Appl Sci. 10 (3): 243–268.
Inglis, C. E. 1913. “Stresses in a plate due to the presence of cracks and sharp corners.” Trans. Inst. Naval Archit. 55: 219–246.
Intera Engineering Ltd. 2010. Laboratory geomechanical strength testing of DGR-3 and DGR-4 core. TR-08-24. Ottawa: Intera Engineering Ltd.
Iqbal, M., and B. Mohanty. 2007. “Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks.” Rock Mech. Rock Eng. 40 (5): 453–475. https://doi.org/10.1007/s00603-006-0107-6.
ISRM (International Society for Rock Mechanics). 1978. “Suggested methods for determining tensile strength of rock materials.” Int. J. Rock Mech. Min. Sci. Geomech Abstr. 15 (3): 99–103. https://doi.org/10.1016/0148-9062(78)90003-7.
Jacobsson, L. 2004a. Forsmark site investigation: Borehole KFM01A, uniaxial compression test of intact rock. P-04-223. Stockholm, Sweden: SKB.
Jacobsson, L. 2004b. Forsmark site investigation: Borehole KFM02A, uniaxial compression test of intact rock. P-94-224. Stockholm, Sweden: SKB.
Jacobsson, L. 2004c. Forsmark site investigation: Borehole KFM03A, uniaxial compression test of intact rock. P-04-225. Stockholm, Sweden: SKB.
Jacobsson, L. 2004d. Forsmark site investigation: Borehole KFM04A, uniaxial compression test of intact rock. P-04-226. Stockholm, Sweden: SKB.
Jacobsson, L. 2009. Forsmark site investigation: Borehole KFM09A, uniaxial compression test of intact rock. P-06-27. Stockholm, Sweden: SKB.
Jacobsson, L. 2005. Oskarshamn site investigation: Borehole KLX03A, uniaxial compression test of intact rock. P-05-96. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company.
Jacobsson, L. 2006. Oskarshamn site investigation: Borehole KLX10, uniaxial compression test of intact rock. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company.
Jacobsson, L. 2007. Oskarshamn site investigation: Borehole KLX16A, uniaxial compression test of intact rock. P-07-143. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company.
Jaeger, J. 1967. “Failure of rocks under tensile conditions.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4 (2): 219–227. https://doi.org/10.1016/0148-9062(67)90046-0.
Kemeny, J. 1991. “A model for non-linear rock deformation under compression due to sub-critical crack growth.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28 (6): 459–467. https://doi.org/10.1016/0148-9062(91)91121-7.
Kemeny, J. M., and N. G. Cook. 1991. “Micromechanics of deformation in rocks.” In Toughening mechanisms in quasi-brittle materials, edited by S. P. Shah, 155–188. Dordrecht, Netherlands: Springer Science+Business Media.
Khan, K., and N. Al-Shayea. 2000. “Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia.” Rock Mech. Rock Eng. 33 (3): 179–206. https://doi.org/10.1007/s006030070006.
Kittitep, F., and K. Sippakorn. 2010. “Laboratory determination of direct tensile strength and deformability of intact rocks.” Geotech. Test. J. 34 (1): 1–6.
Krishnan, G., X. Zhao, M. Zaman, and J.-C. Roegiers. 1998. “Fracture toughness of a soft sandstone.” Int. J. Rock Mech. Min. Sci. 35 (6): 695–710. https://doi.org/10.1016/S0148-9062(97)00324-0.
Kuruppu, M. 1997. “Fracture toughness measurement using chevron notched semi-circular bend specimen.” Int. J. Fract. 86 (4): L33–L38.
Kuruppu, M., Y. Obara, M. Ayatollahi, K. Chong, and T. Funatsu. 2014. “ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen.” Rock. Mech. Rock. Eng. 47 (1): 267–274. https://doi.org/10.1007/s00603-013-0422-7.
Lajtai, E. 1974. “Brittle fracture in compression.” Int. J. Fract. 10 (4): 525–536. https://doi.org/10.1007/BF00155255.
Lajtai, E. 1998. “Microscopic fracture processes in a granite.” Rock Mech. Rock Eng. 31 (4): 237–250. https://doi.org/10.1007/s006030050023.
Li, D., and L. N. Y. Wong. 2013. “The Brazilian disc test for rock mechanics applications: Review and new insights.” Rock Mech. Rock Eng. 46 (2): 269–287. https://doi.org/10.1007/s00603-012-0257-7.
Li, H. S., and Y. L. Zhu. 2002. Fracture mechanics of frozen soils. [In Chinese.] Beijing: Ocean Press.
Lockner, D., J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin. 1991. “Quasi-static fault growth and shear fracture energy in granite.” Nature 350 (6313): 39–42. https://doi.org/10.1038/350039a0.
Lockner, D., J. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin. 1992. “Observations of quasistatic fault growth from acoustic emissions.” Int. Geophys. 51: 3–31. https://doi.org/10.1016/S0074-6142(08)62813-2.
Mahmutoglu, Y. 1998. “Mechanical behaviour of cyclically heated fine grained rock.” Rock Mech. Rock Eng. 31 (3): 169–179. https://doi.org/10.1007/s006030050017.
Martin, C., and N. Chandler. 1994. “The progressive fracture of Lac du Bonnet granite.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 31 (6): 643–659. https://doi.org/10.1016/0148-9062(94)90005-1.
Martin, C., and R. Christiansson. 2009. “Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock.” Int. J. Rock Mech. Min. Sci. 46 (2): 219–228. https://doi.org/10.1016/j.ijrmms.2008.03.001.
Martin, C. D. 1993. “The strength of massive Lac du bonnet granite around underground openings.” Ph.D. thesis, Univ. of Manitoba.
Martin, C. D. 1997. “Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength.” Can. Geotech. J. 34 (5): 698–725. https://doi.org/10.1139/t97-030.
Mellor, M., and I. Hawkes. 1971. “Measurement of tensile strength by diametral compression of discs and annuli.” Eng. Geol. 5 (3): 173–225. https://doi.org/10.1016/0013-7952(71)90001-9.
Morris, P. H., J. Graham, and D. J. Williams. 1992. “Cracking in drying soils.” Can. Geotech. J. 29 (2): 263–277. https://doi.org/10.1139/t92-030.
Murrell, S. 1958. “The strength of coal under triaxial compression.” In Mechanical properties of non-metallic brittle materials, edited by W. H. Walton, 123–153. London: Butterworth.
Murrell, S. 1963. “A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion.” In Proc., 5th Symp. on Rock Mechanics, edited by C. Fairhurst, 563–577. New York: Pergamon Press.
Myer, L., J. Kemeny, Z. Zheng, R. Suarez, R. Ewy, and N. Cook. 1992. “Extensile cracking in porous rock under differential compressive stress.” Appl. Mech. Rev. 45 (8): 263–280. https://doi.org/10.1115/1.3119758.
Nakashima, S., K. Taguchi, A. Moritoshi, N. Shimizu, and T. Funatsu. 2013. “Loading conditions in the Brazilian test simulation by DEM.” In Proc., 47th US Rock Mechanics/Geomechanics Symp. Alexandria, VA: American Rock Mechanics Association.
Nemat-Nasser, S., and H. Horii. 1982. “Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst.” J. Geophys. Res. Solid Earth 87 (B8): 6805–6821. https://doi.org/10.1029/JB087iB08p06805.
Nicksiar, M., and C. Martin. 2012. “Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks.” Rock Mech. Rock Eng. 45 (4): 607–617. https://doi.org/10.1007/s00603-012-0221-6.
Nicksiar, M., and C. Martin. 2013. “Crack initiation stress in low porosity crystalline and sedimentary rocks.” Eng. Geol. 154 (Feb): 64–76. https://doi.org/10.1016/j.enggeo.2012.12.007.
Nordlund, E., C. Li, and B. Carlsson. 1999. Mechanical properties of the diorite in the prototype repository at Äspö HRL: Laboratory tests. IPR-99-25. Stockholm, Sweden: SKB.
Peng, S., and A. Johnson. 1972. “Crack growth and faulting in cylindrical specimens of Chelmsford granite.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 9 (1): 37–42. https://doi.org/10.1016/0148-9062(72)90050-2.
Perras, M. A., and M. S. Diederichs. 2014. “A review of the tensile strength of rock: Concepts and testing.” Geotech. Geol. Eng. 32 (2): 525–546. https://doi.org/10.1007/s10706-014-9732-0.
Perras, M. A., and M. S. Diederichs. 2016. “Predicting excavation damage zone depths in brittle rocks.” J. Rock Mech. Geotech. Eng. 8 (1): 60–74. https://doi.org/10.1016/j.jrmge.2015.11.004.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Pul, S. 2008. “Experimental investigation of tensile behaviour of high strength concrete.” Indian J. Eng. Mater. Sci. 15 (6): 467–472.
Read, R., J. Martino, E. Dzik, and N. Chandler. 1997. Excavation stability study—Analysis and interpretation of results. Toronto: Ontario Power Generation Nuclear Waste Management Division.
Scholtès, L., and F.-V. Donzé. 2013. “A DEM model for soft and hard rocks: Role of grain interlocking on strength.” J. Mech. Phys. Solids 61 (2): 352–369. https://doi.org/10.1016/j.jmps.2012.10.005.
Sheity, D. K., A. R. Rosenfield, and W. H. Duckworth. 1985. “Fracture toughness of ceramics measured by a chevron‐notch diametral‐compression test.” J. Am. Ceram. Soc. 68 (12): C325–C327. https://doi.org/10.1111/j.1151-2916.1985.tb10135.x.
Shiryaev, A., and A. Kotkis. 1983. “Methods for determining fracture toughness of brittle porous materials.” Ind. Lab. 48 (9): 917–918.
Stacey, T. 1981. “A simple extension strain criterion for fracture of brittle rock.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 19 (2): 469–474. https://doi.org/10.1016/0148-9062(82)91665-5.
Stephens, M. B. 2010. Forsmark site investigation: Bedrock geology: Overview and excursion guide. R-10-04. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company.
Sture, S., A. Alqasabi, and M. Ayari. 1999. “Fracture and size effect characters of cemented sand.” Int. J. Fract. 95 (1): 405–433. https://doi.org/10.1023/A:1018637309530.
Szendi-Horvath, G. 1980. “Fracture toughness determination of brittle materials using small to extremely small specimens.” Eng. Fract. Mech. 13 (4): 955–961. https://doi.org/10.1016/0013-7944(80)90025-9.
Tapponnier, P., and W. Brace. 1976. “Development of stress-induced microcracks in Westerly granite.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13 (4): 103–112. https://doi.org/10.1016/0148-9062(76)91937-9.
Thiercelin, M., and J. Roegiers. 1986. “Fracture toughness determination with the modified ring test.” In Proc., Int. Symp. on Engineering in Complex Rock Formations, 1–8. Beijing: Science Press.
Ulusay, R. 2015. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Cham, Switzerland: Springer International Publishing.
Wang, J. 2013. “Mechanical characteristics of deeply buried marble and its technical application.” Ph.D. thesis, Kunming Univ. of Science and Technology.
Wang, J.-J., J.-G. Zhu, C. Chiu, and H. Zhang. 2007. “Experimental study on fracture toughness and tensile strength of a clay.” Eng. Geol. 94 (1): 65–75. https://doi.org/10.1016/j.enggeo.2007.06.005.
Wang, Q., X. Jia, S. Kou, Z. Zhang, and P.-A. Lindqvist. 2004. “The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: Analytical and numerical results.” Int. J. Rock Mech. Min. Sci. 41 (2): 245–253. https://doi.org/10.1016/S1365-1609(03)00093-5.
Wang, Q.-Z., and L. Xing. 1999. “Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks.” Eng. Fract. Mech. 64 (2): 193–201. https://doi.org/10.1016/S0013-7944(99)00065-X.
Wei, M., F. Dai, N. Xu, Y. Xu, and K. Xia. 2015. “Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens.” Eng. Fract. Mech. 134 (Jan): 286–303. https://doi.org/10.1016/j.engfracmech.2014.11.012.
Wei, M. D., F. Dai, N. W. Xu, J. F. Liu, and Y. Xu. 2016a. “Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode i fracture toughness of rocks.” Rock Mech. Rock Eng. 49 (5): 1595–1609. https://doi.org/10.1007/s00603-015-0855-2.
Wei, M. D., F. Dai, N. W. Xu, and T. Zhao. 2016b. “Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks.” Eng. Fract. Mech., 168: 174–189. https://doi.org/10.1016/j.engfracmech.2016.10.004.
Wei, M. D., F. Dai, N. W. Xu, T. Zhao, and K. W. Xia. 2016c. “Experimental and numerical study on the fracture process zone and fracture toughness determination for ISRM-suggested semi-circular bend rock specimen.” Eng. Fract. Mech. 154 (Mar): 43–56. https://doi.org/10.1016/j.engfracmech.2016.01.002.
Wu, S., and X. Xu. 2016. “A study of three intrinsic problems of the classic discrete element method using flat-joint model.” Rock Mech. Rock Eng. 49 (5): 1813–1830. https://doi.org/10.1007/s00603-015-0890-z.
Xu, X., S. Wu, Y. Gao, and M. Xu. 2016. “Effects of micro-structure and micro-parameters on Brazilian tensile strength using flat-joint model.” Rock Mech. Rock Eng. 49 (9): 1–21.
Yu, Y. 2001. Measuring properties of rock from the site of permanent shiplock in Three Gorges project. Test Rep. Wuhan, China: Yangtze River Scientific Research Institute.
Zhang, Z. 2002. “An empirical relation between mode I fracture toughness and the tensile strength of rock.” Int. J. Rock Mech. Min. Sci. 39 (3): 401–406. https://doi.org/10.1016/S1365-1609(02)00032-1.
Zhang, Z., S. Kou, P. Lindqvist, and Y. Yu. 1998. “The relationship between the fracture toughness and tensile strength of rock.” In Strength theory: Application, development & prospects for 21st century, 215–219. Beijing: Science Press.
Zhou, H., Y. Yang, H. Xiao, et al. 2013. “Research on loading rate effect of tensile strength property of hard brittle marble-test characteristics and mechanism.” [In Chinese.] Chin. J. Rock Mech. Eng. 32 (9): 1868–1875.
Zhou, Y., K. Xia, X. Li, H. Li, G. Ma, J. Zhao, Z. Zhou, and F. Dai. 2011. “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.” In The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014, 35–44. Cham, Switzerland: Springer International Publishing.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 18Issue 10October 2018

History

Received: Mar 27, 2017
Accepted: Mar 2, 2018
Published online: Aug 7, 2018
Published in print: Oct 1, 2018
Discussion open until: Jan 7, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Xueliang Xu
Research Assistant, Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, No. 2, Daliushu Rd., Haidian District, Beijing City 100081, China.
Shunchuan Wu [email protected]
Professor, Faculty of Land Resources Engineering, Kunming Univ. of Science and Technology, No. 68, Wenchang Rd., 121 Avenue, Yunnan Province, Kunming City 650093, China; Research Scholar, School of Civil and Environment Engineering, Univ. of Science and Technology Beijing, No. 30, Xueyuan Rd., Haidian District, Beijing City 100083, China (corresponding author). Email: [email protected]
Aibing Jin
Professor, School of Civil and Environment Engineering, Univ. of Science and Technology Beijing, No. 30, Xueyuan Rd., Haidian District, Beijing City 100083, China.
Yongtao Gao
Professor, School of Civil and Environment Engineering, Univ. of Science and Technology Beijing, No. 30, Xueyuan Rd., Haidian District, Beijing City 100083, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share