Technical Papers
May 13, 2014

Three-Dimensional Analysis of Geogrid-Reinforced Soil Using a Finite-Discrete Element Framework

Publication: International Journal of Geomechanics
Volume 15, Issue 4

Abstract

Three-dimensional analysis of soil-structure interaction problems considering the response at the particle scale level is a challenging numerical modeling problem. An efficient framework that takes advantage of both the finite- and discrete-element approaches to investigate soil-geogrid interactions is described in this paper. The method uses finite elements to model the structural components and discrete particles to model the surrounding soil to reflect the discontinuous nature of the granular material. The coupled framework is used in this study to investigate two geotechnical engineering problems, namely, strip footing over geogrid-reinforced sand and geogrid-reinforced fill over a strong formation containing void. The numerical model is first validated using experimental data and then used to provide new insights into the nature of the three-dimensional interaction between the soil and the geogrid layer.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is supported by a research grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). The financial support provided by a McGill Engineering Doctoral Award (MEDA) to V. D. H. T. is greatly appreciated.

References

Abu-Farsakh, M., Chen, Q., Sharma, R., and Zhang, X. (2008). “Large-scale model footing tests on geogrid-reinforced foundation and marginal embankment soils.” Geotech. Test. J., 31(5), 413–423.
Adams, M. T., and Collin, J. G. (1997). “Large model spread footing load tests on geosynthetic reinforced soil foundations.” J. Geotech. Geoenviron. Eng., 66–72.
Agaiby, S. W., and Jones, C. J. (1995). “Design of reinforced fill systems over voids.” Can. Geotech. J., 32(6), 939–945.
Basudhar, P. K., Saha, S., and Deb, K. (2007). “Circular footings resting on geotextile-reinforced sand bed.” Geotext. Geomembr., 25(6), 377–384.
Belheine, N., Plassiard, J. P., Donzé, F. V., Darve, F., and Seridi, A. (2009). “Numerical simulation of drained triaxial test using 3D discrete element modeling.” Comput. Geotech., 36(1–2), 320–331.
Binquet, J., and Lee, K. L. (1975a). “Bearing capacity analysis of reinforced earth slabs.” J. Geotech. Engrg. Div., 101(12), 1257–1276.
Binquet, J., and Lee, K. L. (1975b). “Bearing capacity tests on reinforced earth slabs.” J. Geotech. Engrg. Div., 101(12), 1241–1255.
Briançon, L., and Villard, P. (2008). “Design of geosynthetic-reinforced platforms spanning localized sinkholes.” Geotext. Geomembr., 26(5), 416–428.
Bridle, R. J., Jenner, C. G., and Barr, B. (1994). “Novel applications of geogrids in areas of shallow mine workings.” Proc., 5th Int. Conf. on Geotextiles, Geomembranes and Related Products, Vol. 1, Southeast Asia Chapter of the Int. Geotextile Society (SEAC-IGS), Singapore, 297–300.
Chakraborty, D. and Kumar, J. (2014). “Bearing capacity of strip foundations in reinforced soils.” Int. J. Geomech., 45–58.
Chen, C., McDowell, G. R., and Thom, N. H. (2012). “Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions.” Geotext. Geomembr., 35, 76–86.
Chen, Q., Abu-Farsakh, M., and Sharma, R. (2009). “Experimental and analytical studies of reinforced crushed limestone.” Geotext. Geomembr., 27(5), 357–367.
Chen, Q., Abu-Farsakh, M. Y., Sharma, R., and Zhang, X. (2007). “Laboratory investigation of behavior of foundations on geosynthetic-reinforced clayey soil.” Transportation Research Record 2004, Transportation Research Board, Washington, DC, 28–38.
Choudhary, A. K., Jha, J. N., and Gill, K. S. (2010). “Laboratory investigation of bearing capacity behaviour of strip footing on reinforced flyash slope.” Geotext. Geomembr., 28(4), 393–402.
Chung, W., and Cascante, G. (2007). “Experimental and numerical study of soil-reinforcement effects on the low-strain stiffness and bearing capacity of shallow foundations.” Geotech. Geol. Eng., 25(3), 265–281.
Costa, Y. D., Zornberg, J. G., Bueno, B. S., and Costa, C. L. (2009). “Failure mechanisms in sand over a deep active trapdoor.” J. Geotech. Geoenviron. Eng., 1741–1753.
Cundall, P. A., and Strack, O. D. (1979). “A discrete numerical model for granular assemblies.” Geotechnique, 29(1), 47–65.
Dang, H. K., and Meguid, M. A. (2010a). “Algorithm to generate a discrete element specimen with predefined properties.” Int. J. Geomech., 85–91.
Dang, H. K., and Meguid, M. A. (2010b). “Evaluating the performance of an explicit dynamic relaxation technique in analyzing nonlinear geotechnical engineering problems.” Comput. Geotech., 37(1–2), 125–131.
Dang, H. K., and Meguid, M. A. (2013). “An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems.” Int. J. Numer. Anal. Methods Geomech., 37(2), 130–149.
Das, B. M., Shin, E. C., and Omar, M. T. (1994). “The bearing capacity of surface strip foundations on geogrid-reinforced sand and clay—A comparative study.” Geotech. Geol. Eng., 12(1), 1–14.
Dash, S. K., Krishnaswamy, N. R., and Rajagopal, K. (2001). “Bearing capacity of strip footings supported on geocell-reinforced sand.” Geotext. Geomembr., 19(4), 235–256.
DeMerchant, M. R., Valsangkar, A. J., and Schriver, A. B. (2002). “Plate load tests on geogrid-reinforced expanded shale lightweight aggregate.” Geotext. Geomembr., 20(3), 173–190.
Elmekati, A., and El Shamy, U. (2010). “A practical co-simulation approach for multiscale analysis of geotechnical systems.” Comput. Geotech., 37(4), 494–503.
Ferellec, J. F., and McDowell, G. R. (2012). “Modelling of ballast–geogrid interaction using the discrete-element method.” Geosynth. Int., 19(6), 470–479.
Gabr, M. A., and Hunter, T. J. (1994). “Stress-strain analysis of geogrid-supported liners over subsurface cavities.” Geotech. Geol. Eng., 12(2), 65–86.
Gabr, M. A., Hunter, T. J., and Collin, J. G. (1992). “Stability of geogrid-reinforced landfill liners over sinkholes.” Proc., Earth Reinforcement Practice, H. Ochiai, S. Hayashi, and J. Otani, eds., Balkema, Rotterdam, Netherlands, 595–600.
Gaetano, E. A. (2010). “The response of flexible pavement systems to local deterioration of the base layer.” M.S. thesis, McGill Univ., Montréal.
Ghazavi, M., and Lavasan, A. A. (2008). “Interference effect of shallow foundations constructed on sand reinforced with geosynthetics.” Geotext. Geomembr., 26(5), 404–415.
Ghosh, A., and Dey, U. (2009). “Bearing ratio of reinforced fly ash overlying soft soil and deformation modulus of fly ash.” Geotext. Geomembr., 27(4), 313–320.
Giroud, J. P., Bonaparte, R., Beech, J. F., and Gross, B. A. (1990). “Design of soil layer-geosynthetic systems overlying voids.” Geotext. Geomembr., 9(1), 11–50.
Guido, V. A., Chang, D. K., and Sweeny, M. A. (1986). “Comparison of geogrid and geotextile reinforced slabs.” Can. Geotech. J., 23(4), 435–440.
Halvordson, K. A., Plaut, R. H., and Filz, G. M. (2010). “Analysis of geosynthetic reinforcement in pile-supported embankments. Part II: 3D cable-net model.” Geosynth. Int., 17(2), 68–76.
Han, J., Bhandari, A., and Wang, F. (2012). “DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles.” Int. J. Geomech., 340–350.
Huang, C. C., and Menq, F. Y. (1997). “Deep-footing and wide-slab effects in reinforced sandy ground.” J. Geotech. Geoenviron. Eng., 30–36.
Huang, C. C., and Tatsuoka, F. (1990). “Bearing capacity of reinforced horizontal sandy ground.” Geotext. Geomembr., 9(1), 51–82.
Jenck, O., Dias, D., and Kastner, R. (2009). “Three-dimensional numerical modeling of a piled embankment.” Int. J. Geomech., 102–112.
Jeon, S. S. (2011). “Vertical earth pressure increments due to vibratory roller on geogrid-reinforced embankments.” Geosynth. Int., 18(5), 332–338.
Jiang, M. J., Konrad, J. M., and Leroueil, S. (2003). “An efficient technique for generating homogeneous specimens for DEM studies.” Comput. Geotech., 30(7), 579–597.
Jones, B. M., Plaut, R. H., and Filz, G. M. (2010). “Analysis of geosynthetic reinforcement in pile-supported embankments. Part I: 3D plate model.” Geosynth. Int., 17(2), 59–67.
Khing, K. H., Das, B. M., Puri, V. K., Cook, E. E., and Yen, S. C. (1993). “The bearing-capacity of a strip foundation on geogrid-reinforced sand.” Geotext. Geomembr., 12(4), 351–361.
Kinney, T. C., and Connor, B. (1987). “Geosynthetics supporting embankments over voids.” J. Cold Reg. Eng., 158–170.
Koutsabeloulis, N. C., and Griffiths, D. V. (1989). “Numerical modelling of the trap door problem.” Geotechnique, 39(1), 77–89.
Kozicki, J., and Donzé, V. F. (2009). “YADE-OPEN DEM: An open-source software using a discrete element method to simulate granular material.” Eng. Comput., 26(7), 786–805.
Kumar, A., and Saran, S. (2003). “Bearing capacity of rectangular footing on reinforced soil.” Geotech. Geol. Eng., 21(3), 201–224.
Kurian, N. P., Beena, K. S., and Kumar, R. K. (1997). “Settlement of reinforced sand in foundations.” J. Geotech. Geoenviron. Eng., 818–827.
Kwon, J., Tutumluer, E., and Konietzky, H. (2008). “Aggregate base residual stresses affecting geogrid reinforced flexible pavement response.” Int. J. Pavement Eng., 9(4), 275–285.
Labra, C., and Oñate, E. (2009). “High density sphere packing for discrete element method simulations.” Commun. Numer. Methods Eng., 25(7), 837–849.
Lawson, C. R., Jones, C. J. F. P., Kempton, G. T., and Passaris, E. K. S. (1994). “Advanced analysis of reinforced fills over areas prone to subsidence.” Proc., 5th Int. Conf. on Geotextiles, Geomembranes and Related Products, Vol. 1, Balkema, Rotterdam, Netherlands, 311–317.
Li, F. L., Peng, F. L., Tan, Y., Kongkitkul, W., and Siddiquee, M. S. A. (2012). “FE simulation of viscous behavior of geogrid-reinforced sand under laboratory-scale plane-strain-compression testing.” Geotext. Geomembr., 31(4), 72–80.
Lin, Y. L., Zhang, M. X., Javadi, A. A., Lu, Y., and Zhang, S. L. (2013). “Experimental and DEM simulation of sandy soil reinforced with H-V inclusions in plane strain tests.” Geosynth. Int., 20(3), 162–173.
Liu, H. L., Ng, C. W., and Fei, K. (2007). “Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study.” J. Geotech. Geoenviron. Eng., 1483–1493.
Lobo-Guerrero, S., and Vallejo, L. E. (2006). “Discrete element method analysis of railtrack ballast degradation during cyclic loading.” Granular Matter, 8(3–4), 195–204.
Madhavi Latha, G. M., and Somwanshi, A. (2009a). “Bearing capacity of square footings on geosynthetic reinforced sand.” Geotext. Geomembr., 27(4), 281–294.
Madhavi Latha, G. M., and Somwanshi, A. (2009b). “Effect of reinforcement form on the bearing capacity of square footings on sand.” Geotext. Geomembr., 27(6), 409–422.
Maynar, M. J., and Rodríguez, L. E. (2005). “Discrete numerical model for analysis of earth pressure balance tunnel excavation.” J. Geotech. Geoenviron. Eng., 1234–1242.
McDowell, G. R., Harireche, O., Konietzky, H., Brown, S. F., and Thom, N. H. (2006). “Discrete element modelling of geogrid-reinforced aggregates.” Proc. Inst. Civ. Eng. Geotech. Eng., 159(1), 35–48.
Meguid, M. A., and Dang, H. K. (2009). “The effect of erosion voids on existing tunnel linings.” Tunnelling Underground Space Technol., 24(3), 278–286.
Meyerhof, G. G., and Hanna, A. M. (1978). “Ultimate bearing capacity of foundations on layered soils under inclined load.” Can. Geotech. J., 15(4), 565–572.
Michalowski, R. L. (2004). “Limit loads on reinforced foundation soils.” J. Geotech. Geoenviron. Eng., 381–390.
Michalowski, R. L., and Shi, L. (2003). “Deformation patterns of reinforced foundation sand at failure.” J. Geotech. Geoenviron. Eng., 439–449.
Moghaddas Tafreshi, S. N., and Dawson, A. R. (2010). “Behaviour of footings on reinforced sand subjected to repeated loading—Comparing use of 3D and planar geotextile.” Geotext. Geomembr., 28(5), 434–447.
Moghaddas Tafreshi, S. N., Khalaj, O., and Halvaee, M. (2011). “Experimental study of a shallow strip footing on geogrid-reinforced sand bed above a void.” Geosynth. Int., 18(4), 178–195.
Mohamed, M. H. A. (2010). “Two dimensional experimental study for the behaviour of surface footings on unreinforced and reinforced sand beds overlying soft pockets.” Geotext. Geomembr., 28(6), 589–596.
Patra, C. R., Das, B. M., Bhoi, M., and Shin, E. C. (2006). “Eccentrically loaded strip foundation on geogrid-reinforced sand.” Geotext. Geomembr., 24(4), 254–259.
Poorooshasb, H. B. (1991). “Load settlement response of a compacted fill layer supported by a geosynthetic overlying a void.” Geotext. Geomembr., 10(3), 179–201.
Sadoglu, E., Cure, E., Moroglu, B., and Uzuner, B. A. (2009). “Ultimate loads for eccentrically loaded model shallow strip footings on geotextile-reinforced sand.” Geotext. Geomembr., 27(3), 176–182.
Schlosser, F., Jacobsen, H. M., and Juran, I. (1983). “Soil reinforcement—General report.” Proc., 8th European Conf. on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam, Netherlands, 83–103.
Sharma, R., Chen, Q., Abu-Farsakh, M., and Yoon, S. (2009). “Analytical modeling of geogrid reinforced soil foundation.” Geotext. Geomembr., 27(1), 63–72.
Shin, E. C., Das, B. M., Puri, V. K., Yen, S. C., and Cook, E. E. (1993). “Bearing capacity of strip foundation on geogrid-reinforced clay.” Geotech. Test. J., 16(4), 534–541.
Siddiquee, M. S. A., and Huang, C. C. (2001). “FEM simulation of the bearing capacity of level reinforced sand ground subjected to footing load.” Geosynth. Int., 8(6), 501–549.
Šmilauer, V., et al. (2010). “Welcome to YADE—Open source discrete element method.” 〈http://yade-dem.org/doc/〉 (Dec. 15, 2013).
Terzaghi, K. (1936). “Stress distribution in dry and saturated sand above a yielding trap door.” Proc., Int. Conf. of Soil Mechanics, Vol. 1, Harvard Univ., Cambridge, MA, 307–311.
Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. (2013). “A finite–discrete element framework for the 3D modeling of geogrid–soil interaction under pullout loading conditions.” Geotext. Geomembr., 37(1), 1–9.
Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. (2014). “Discrete element and experimental investigations of the earth pressure distribution on cylindrical shafts.” Int. J. Geomech., 80–91.
Villard, P., Chevalier, B., Hello, B. L., and Combe, G. (2009). “Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic.” Comput. Geotech., 36(5), 709–717.
Villard, P., Gourc, J. P., and Giraud, H. (2000). “A geosynthetic reinforcement solution to prevent the formation of localized sinkholes.” Can. Geotech. J., 37(5), 987–999.
Wang, F., Han, J., Miao, L.-C., and Bhandari, A. (2009). “Numerical analysis of geosynthetic-bridged and drilled shafts-supported embankments over large sinkholes.” Geosynth. Int., 16(6), 408–419.
Wang, M. C., Feng, Y. X., and Jao, M. (1996). “Stability of geosynthetic-reinforced soil above a cavity.” Geotext. Geomembr., 14(2), 95–109.
Wayne, M. H., Han, J., and Akins, K. (1998). “The design of geosynthetic reinforced foundations.” Proc., Annual Convention and Exposition, Geotechnical Special Publication, Vol. 76, ASCE, New York, 1–18.
Xiao, S. P., and Belytschko, T. (2004). “A bridging domain method for coupling continua with molecular dynamics.” Comput. Meth. Appl. Mech. Eng., 193(17–20), 1645–1669.
Yamamoto, K., and Otani, J. (2002). “Bearing capacity and failure mechanism of reinforced foundations based on rigid-plastic finite element formulation.” Geotext. Geomembr., 20(6), 367–393.
Yetimoglu, T., Wu, J. T. H., and Saglamer, A. (1994). “Bearing capacity of rectangular footings on geogrid-reinforced sand.” J. Geotech. Engrg., 2083–2099.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 15Issue 4August 2015

History

Received: Apr 9, 2013
Accepted: Apr 15, 2014
Published online: May 13, 2014
Published in print: Aug 1, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

V. D. H. Tran [email protected]
Graduate Student, Dept. of Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. West, Montreal, QC, Canada H3A 0C3. E-mail: [email protected]
M. A. Meguid, M.ASCE [email protected]
Associate Professor, Dept. of Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. West, Montreal, QC, Canada H3A 0C3 (corresponding author). E-mail: [email protected]
L. E. Chouinard [email protected]
Associate Professor, Dept. of Civil Engineering and Applied Mechanics, McGill Univ., 817 Sherbrooke St. West, Montreal, QC, Canada H3A 0C3. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share