Abstract

An investigation of the characteristics of turbulent prevaporized n-heptane-air flames, stabilized in the downstream wake region of a stratifier/bluff-body combustor configuration under the effect of inlet fuel-air mixture stratification and preheat, is presented. Experimental and computational results for different fuel-air mixing wake topologies have been obtained by regulating the fuel injection level and the incoming fuel-air ratio gradient. Fourier transform infrared analysis and particle image velocimetry measurements were taken to assess the mixing field characteristics in the near-wake region under nonreacting operation. Chemiluminescence measurements were also obtained to assess the flame topology under reacting conditions. In the computations, an implicit, finite-volume-based large eddy simulation method, coupled with a 25-species reduced n-C7H16 kinetic scheme, was utilized for reproducing the mixing and the reacting field characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research is cofinanced by Greece and the European Union (European Social Fund- ESF) through the Operational Programme, Human Resources Development, Education and Lifelong Learning 2014–2020, in the context of the project “Development and integration of a combination of innovative methodologies into a low-emission combustion system for energy production using liquid fuels” [Management Information System (MIS): 5047151].

References

Amato, A., J. M. Seitzman, and T. C. Lieuwen. 2013. Gas turbine emissions. Cambridge, UK: Cambridge University Press.
Arndt, C. M., C. Dem, and W. Meier. 2021. “Influence of fuel staging on thermo-acoustic oscillations in a premixed stratified dual-swirl gas turbine model combustor.” Flow Turbul. Combust. 106 (2): 613–629. https://doi.org/10.1007/s10494-020-00158-6.
Celik, I. B., Z. N. Cehreli, and I. Yavuz. 2005. “Index of resolution quality for large eddy simulations.” J. Fluids Eng. 127 (5): 949–958. https://doi.org/10.1115/1.1990201.
Chaudhuri, S., and B. M. Cetegen. 2008. “Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations.” Combust. Flame 153 (4): 616–633. https://doi.org/10.1016/j.combustflame.2007.12.008.
Chowdhury, B. R., and B. M. Cetegen. 2017. “Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames.” Combust. Flame 178 (Apr): 311–328. https://doi.org/10.1016/j.combustflame.2016.12.019.
Chterev, I., B. Emerson, and T. Lieuwen. 2018. “Velocity and stretch characteristics at the leading edge of an aerodynamically stabilized flame.” Combust. Flame 193 (Jul): 92–111. https://doi.org/10.1016/j.combustflame.2018.02.024.
Dogkas, E., I. Lytras, P. Koutmos, and G. Kontogouris. 2020. “Reduced kinetic schemes for complex reacting flow computations of propane–air combustion.” Combust. Explos. Shock Waves 56 (1): 23–35. https://doi.org/10.1134/S0010508220010037.
Dunn-Rankin, D., and Y.-C. Chien. 2019. Cleaner combustion. Basel, Switzerland: Multidisciplinary Digital Publishing Institute.
Duwig, C., K.-J. Nogenmyr, C. Chan, and M. J. Dunn. 2011. “Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry.” Combust. Theory Model. 15 (4): 537–568. https://doi.org/10.1080/13647830.2010.548531.
Esclapez, L., P. C. Ma, E. Mayhew, R. Xu, S. Stouffer, T. Lee, H. Wang, and M. Ihme. 2017. “Fuel effects on lean blow-out in a realistic gas turbine combustor.” Combust. Flame 181 (Jul): 82–99. https://doi.org/10.1016/j.combustflame.2017.02.035.
Filatyev, S. A., J. F. Driscoll, C. D. Carter, and J. M. Donbar. 2005. “Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities.” Combust. Flame 141 (1–2): 1–21. https://doi.org/10.1016/j.combustflame.2004.07.010.
Fooladgar, E., and C. K. Chan. 2017. “Effects of stratification on flame structure and pollutants of a swirl stabilized premixed combustor.” Appl. Therm. Eng. 124 (Sep): 45–61. https://doi.org/10.1016/j.applthermaleng.2017.05.197.
Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. 1991. “A dynamic subgrid-scale eddy viscosity model.” Phys. Fluids A: Fluid Dyn. 3 (7): 1760–1765. https://doi.org/10.1063/1.857955.
Griebel, P., P. Siewert, and P. Jansohn. 2007. “Flame characteristics of turbulent lean premixed methane/air flames at high pressure: Turbulent flame speed and flame brush thickness.” Proc. Combust. Inst. 31 (2): 3083–3090. https://doi.org/10.1016/j.proci.2006.07.042.
Hodzic, E., E. Alenius, C. Duwig, R. S. Szasz, and L. Fuchs. 2017. “A large eddy simulation study of bluff body flame dynamics approaching blow-off.” Combust. Sci. Technol. 189 (7): 1107–1137. https://doi.org/10.1080/00102202.2016.1275592.
IAEA (International Atomic Energy Agency). 2018. Energy, electricity and nuclear power estimates for the period up to 2050, Reference data series no. 1. Vienna, Austria: IAEA.
Irannejad, A., A. Banaeizadeh, and F. Jaberi. 2015. “Large eddy simulation of turbulent spray combustion.” Combust. Flame 162 (2): 431–450. https://doi.org/10.1016/j.combustflame.2014.07.029.
ISO (International Organization for Standarization). 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running Full – Part 2: Orifice plates. ISO 5167-2. Geneva: ISO.
Jaravel, T., E. Riber, B. Cuenot, and G. Bulat. 2017. “Large eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction.” Proc. Combust. Inst. 36 (3): 3817–3825. https://doi.org/10.1016/j.proci.2016.07.027.
Karagiannaki, C., E. Dogkas, G. Paterakis, K. Souflas, E. Z. Psarakis, P. Vasiliou, and P. Koutmos. 2014. “A comparison of the characteristics of disk stabilized lean propane flames operated under premixed or stratified inlet mixture conditions.” Exp. Therm. Fluid Sci. 59 (Nov): 264–274. https://doi.org/10.1016/j.expthermflusci.2014.04.002.
Kheirkhah, S., and Ö. L. Gülder. 2013. “Turbulent premixed combustion in V-shaped flames: Characteristics of flame front.” Phys. Fluids 25 (5): 55107. https://doi.org/10.1063/1.4807073.
Kuenne, G., F. Seffrin, F. Fuest, T. Stahler, A. Ketelheun, D. Geyer, J. Janicka, and A. Dreizler. 2012. “Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation.” Combust. Flame 159 (8): 2669–2689. https://doi.org/10.1016/j.combustflame.2012.02.010.
Lee, G. G., K. Y. Huh, and H. Kobayashi. 2000. “Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner.” Combust. Flame 122 (1–2): 43–57. https://doi.org/10.1016/S0010-2180(00)00102-4.
Lytras, I., P. Koutmos, and E. Dogkas. 2019. “Reduced kinetic models for methane flame simulations.” Combust. Explos. Shock Waves 55 (2): 132–147. https://doi.org/10.1134/S0010508219020023.
Lytras, I., E. P. Mitsopoulos, E. Dogkas, and P. Koutmos. 2020. “Algebraic model for chemiluminescence emissions suitable for using in complex turbulent propane flame simulations.” Combust. Explos. Shock Waves 56 (3): 278–291. https://doi.org/10.1134/S0010508220030041.
Masri, A. R. 2015. “Partial premixing and stratification in turbulent flames.” Proc. Combust. Inst. 35 (2): 1115–1136. https://doi.org/10.1016/j.proci.2014.08.032.
Mitsopoulos, E. P., P. Koutmos, E. Manouskou, and I. Georgantas. 2021. “Reduced kinetic model for complex turbulent n-heptane flame simulations.” Combust. Explos. Shock Waves 57 (5).
Mitsopoulos, E. P., I. Lytras, and P. Koutmos. 2019. “Large eddy simulations of premixed CH4 bluff-body flames operating close to the lean limit using quasi-global chemistry and an algebraic chemiluminescence model.” Theor. Comput. Fluid Dyn. 33 (3): 325–340. https://doi.org/10.1007/s00162-019-00497-9.
Mitsopoulos, E. P., K. Souflas, and P. Koutmos. 2020. “Effect of inlet-mixture stratification and preheating on a C3H8 premixer and bluff-body combustor.” J. Energy Eng. 146 (6): 04020056. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000702.
Namazian, M., I. G. Shepherd, and L. Talbot. 1986. “Characterization of the density fluctuations in turbulent v-shaped premixed flames.” Combust. Flame 64 (3): 299–308. https://doi.org/10.1016/0010-2180(86)90147-1.
Paterakis, G., E. Politi, and P. Koutmos. 2019. “Experimental investigation of isothermal scalar mixing fields downstream of axisymmetric baffles under fully premixed or stratified inlet mixture conditions.” Exp. Therm. Fluid Sci. 108 (Nov): 1–15. https://doi.org/10.1016/j.expthermflusci.2019.05.018.
Pathania, R. S., A. W. Skiba, and E. Mastorakos. 2021. “Experimental investigation of unconfined turbulent premixed bluff-body stabilized flames operated with vapourised liquid fuels.” Combust. Flame 227 (May): 428–442. https://doi.org/10.1016/j.combustflame.2021.01.021.
Rakopoulos, C. D., D. C. Rakopoulosa, G. M. Kosmadakis, and R. G. Papagiannakis. 2019. “Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine.” Energy 174 (May): 1145–1157. https://doi.org/10.1016/j.energy.2019.03.063.
Rakopoulos, D. C., C. D. Rakopoulos, E. G. Giakoumis, N. P. Komninos, G. M. Kosmadakis, and R. G. Papagiannakis. 2017. “Comparative evaluation of ethanol, n-butanol, and diethyl ether effects as biofuel supplements on combustion characteristics, cyclic variations, and emissions balance in light-duty diesel engine.” J. Energy Eng. 143 (2): 04016044. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000399.
Rakopoulos, D. C., C. D. Rakopoulosa, E. G. Giakoumis, R. G. Papagiannakis, and D. C. Kyritsis. 2014. “Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether.” Energy 73 (Aug): 354–366. https://doi.org/10.1016/j.energy.2014.06.032.
Sacomano Filho, F. L., G. Kuenne, M. Chrigui, A. Sadiki, and J. Janicka. 2017. “A consistent artificially thickened flame approach for spray combustion using LES and the FGM chemistry reduction method: Validation in lean partially pre-vaporized flames.” Combust. Flame 184 (Oct): 68–89. https://doi.org/10.1016/j.combustflame.2017.05.031.
Seffrin, F., F. Fuest, D. Geyer, and A. Dreizler. 2010. “Flow field studies of a new series of turbulent premixed stratified flames.” Combust. Flame 157 (2): 384–396. https://doi.org/10.1016/j.combustflame.2009.09.001.
Smallbone, A. J., W. Liu, C. K. Law, X. Q. You, and H. Wang. 2009. “Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane.” Proc. Combust. Inst. 32 (1): 1245–1252. https://doi.org/10.1016/j.proci.2008.06.213.
Souflas, K., and P. Koutmos. 2017. “Flow, mixing, and combustion characteristics of high velocity ratio plane coaxial and convoluted trailing edge nozzles.” J. Energy Eng. 143 (2): 04016054. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000408.
Souflas, K., and P. Koutmos. 2018. “On the non-reacting flow and mixing fields of an axisymmetric disk stabilizer, under inlet mixture stratification and preheat.” Exp. Therm. Fluid Sci. 99 (Dec): 357–366. https://doi.org/10.1016/j.expthermflusci.2018.08.008.
Souflas, K., K. Perrakis, and P. Koutmos. 2020. “On the turbulent flow and pollutant emission characteristics of disk stabilized propane-air flames, under inlet mixture stratification and preheat.” Fuel 260 (Jan): 116333. https://doi.org/10.1016/j.fuel.2019.116333.
Sweeney, M. S., S. Hochgreb, and R. S. Barlow. 2011. “The structure of premixed and stratified low turbulence flames.” Combust. Flame 158 (5): 935–948. https://doi.org/10.1016/j.combustflame.2011.02.007.
Sweeney, M. S., S. Hochgreb, M. J. Dunn, and R. S. Barlow. 2012. “The structure of turbulent stratified and premixed methane/air flames II: Swirling flows.” Combust. Flame 159 (9): 2912–2929. https://doi.org/10.1016/j.combustflame.2012.05.014.
Tachibana, S., K. Kanai, S. Yoshida, K. Suzuki, and T. Sato. 2015. “Combined effect of spatial and temporal variations of equivalence ratio on combustion instability in a low-swirl combustor.” Proc. Combust. Inst. 35 (3): 3299–3308. https://doi.org/10.1016/j.proci.2014.07.024.
Tamadonfar, P., and Ö. L. Gülder. 2014. “Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames.” Combust. Flame 161 (12): 3154–3165. https://doi.org/10.1016/j.combustflame.2014.06.014.
Vidal, M., W. Wong, W. J. Rogers, and M. S. Mannan. 2006. “Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.” J. Hazard. Mater. 130 (1–2): 21–27. https://doi.org/10.1016/j.jhazmat.2005.07.080.
Wen, X., S. Hartl, A. Dreizler, J. Janicka, and C. Hasse. 2021. “Flame structure analysis of turbulent premixed/stratified flames with H2 addition considering differential diffusion and stretch effects.” Proc. Combust. Inst. 38 (2): 2993–3001. https://doi.org/10.1016/j.proci.2020.06.267.
Wu, B., X. Zhao, B. R. Chowdhury, B. M. Cetegen, C. Xu, and T. Lu. 2019. “A numerical investigation of the flame structure and blowoff characteristics of a bluff-body stabilized turbulent premixed flame.” Combust. Flame 202 (Apr): 376–393. https://doi.org/10.1016/j.combustflame.2019.01.026.
Xiouris, C., and P. Koutmos. 2011. “An experimental investigation of the interaction of swirl flow with partially premixed disk stabilized propane flames.” Exp. Therm. Fluid Sci. 35 (6): 1055–1066. https://doi.org/10.1016/j.expthermflusci.2011.02.008.
Xiouris, C. Z., and P. Koutmos. 2012. “Fluid dynamics modeling of a stratified disk burner in swirl co-flow.” Appl. Therm. Eng. 35 (1): 60–70. https://doi.org/10.1016/j.applthermaleng.2011.10.007.
Zahos-Siagos, I., A. Antonerias, and D. Karonis. 2018. “Impact of ethanol and n-butanol addition on fuel properties and exhaust emissions of a stationary diesel engine.” J. Energy Eng. 144 (5): 4018052. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000566.
Zhang, Q., S. J. Shanbhogue, T. Shreekrishna Lieuwen, and J. O’Connor. 2011. “Strain characteristics near the flame attachment point in a swirling flow.” Combust. Sci. Technol. 183 (7): 665–685. https://doi.org/10.1080/00102202.2010.537288.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 5October 2021

History

Received: Apr 2, 2021
Accepted: Jun 1, 2021
Published online: Aug 3, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 3, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Assistant, Laboratory of Applied Thermodynamics, Dept. of Mechanical and Aeronautical Engineering, Univ. of Patras, Patras 26500, Greece (corresponding author). ORCID: https://orcid.org/0000-0002-2761-7778. Email: [email protected]
Research Associate, Laboratory of Applied Thermodynamics, Dept. of Mechanical and Aeronautical Engineering, Univ. of Patras, Patras 26500, Greece. ORCID: https://orcid.org/0000-0001-8235-1143. Email: [email protected]
Professor, Laboratory of Applied Thermodynamics, Dept. of Mechanical and Aeronautical Engineering, Univ. of Patras, Patras 26500, Greece. ORCID: https://orcid.org/0000-0001-9607-7413. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • An Investigation of Axisymmetric Disk Stabilized Propane-Air Flames Operating under Inlet Mixture Preheat and Stratification, Combustion Science and Technology, 10.1080/00102202.2022.2053684, (1-29), (2022).
  • Numerical Research on the Effect of Operating Parameters on Combustion and Performance Characteristics of Cyclohexane/N-Heptane HCCI, Journal of Energy Engineering, 10.1061/(ASCE)EY.1943-7897.0000855, 148, 6, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share