Technical Papers
Feb 27, 2021

Sponge-Supported Triboelectric Nanogenerator for Energy Harvesting from Rail Vibration

Publication: Journal of Energy Engineering
Volume 147, Issue 3

Abstract

Smart health monitoring based on a wireless sensor network plays a crucial role in maintaining the efficiency and safety of railway systems during operation, while the power source of the railway monitoring system remains a problem. Considering the mechanical energy produced by the rail vibration to be a sustainable and environment friendly power source, we propose a sponge-supported triboelectric nanogenerator (S-TENG) device as an energy harvester for the railway monitoring system. A high-density sponge is utilized under the tribo-pair as an innovative flexible buffer structure. The initial gap between the tribo-pair is properly designed according to the rail vibration amplitude to guarantee that the two dielectric materials can get into contact, while the rail with displacement beyond the initial gap will compress the sponge instead of squashing the tribo-pair, so as not to break the tribo-pair and to improve the output performance by enhancing the contact force between the tribo-pair. The feasibility of the sponge base is proved through a mechanical test, and a series of well-designed experimental tests are carried out to study the output performance of S-TENG with various loading conditions. To further investigate the applicability of S-TENG in railway monitoring, we establish a theoretical model for S-TENG output performance combined with a metro train-floating slab track model and simulate the output characteristics of S-TENG under train operation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All the underlying data related to this article are available from the first author upon request.

Acknowledgments

This work was supported by the National Key R&D Program of China under Grant No. 2018YFB1600200, the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars under Grant No. LR20E080003, the National Natural Science Foundation of China under Grant No. 51978609, the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY17E080005, and the Hangzhou Science and Technology plan project under Grant Nos. 20191203B40 and 20191203B42.

References

Baig, M. M., and H. Gholamhosseini. 2013. “Smart health monitoring systems: An overview of design and modeling.” J Med Syst. 37 (2): 9898. https://doi.org/10.1007/s10916-012-9898-z.
Beeby, S. P., R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O’Donnell, C. R. Saha, and S. Roy. 2007. “A micro electromagnetic generator for vibration energy harvesting.” J. Micromech. Microeng. 17 (7): 1257–1265. https://doi.org/10.1088/0960-1317/17/7/007.
Bian, Y., T. Jiang, T. Xiao, W. Gong, X. Cao, Z. Wang, and Z. L. Wang. 2018. “Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel.” Adv. Mater. Technol. 3 (3): 1700317. https://doi.org/10.1002/admt.201700317.
Chen, J., and Z. L. Wang. 2017. “Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator.” Joule 1 (3): 480–521. https://doi.org/10.1016/j.joule.2017.09.004.
Chung, W., K. Kwon, and S. Y. Jang. 2014. “Deflection-based load transfer efficiency of floating slab track.” KSCE J. Civ. Eng. 18 (2): 616–624. https://doi.org/10.1007/s12205-014-0127-9.
Cleante, V. G., M. J. Brennan, G. Gatti, and D. J. Thompson. 2019. “On the target frequency for harvesting energy from track vibrations due to passing trains.” Mech. Syst. Signal Proc. 114: 212–223. https://doi.org/10.1016/j.ymssp.2018.05.003.
Davies, G., N. Boot-Handford, D. Curry, W. Dennis, A. Ajileye, A. Revesz, and G. Maidment. 2019. “Combining cooling of underground railways with heat recovery and reuse.” Sust. Cities Soc. 45 (Feb): 543–552. https://doi.org/10.1016/j.scs.2018.11.045.
Ding, P., J. Chen, U. Farooq, P. Zhao, N. Soin, L. Yu, H. Jin, X. Wang, S. Dong, and J. Luo. 2018. “Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40  W/m2 high power flat surface triboelectric nanogenerators.” Nano Energy 46 (Apr): 63–72. https://doi.org/10.1016/j.nanoen.2018.01.034.
Gao, M. Y., P. Wang, Y. Cao, R. Chen, and C. Liu. 2016. “A rail-borne piezoelectric transducer for energy harvesting of railway vibration.” J. Vibroeng. 18 (7): 4647–4663. https://doi.org/10.21595/jve.2016.16938.
Geng, L. X., S. Bian, T. Li, Z. Si, and Z. J. Wei. 2018. “Application of triboelectric nanogenerator in the railway system.” In Proc., Int. Conf. on Electrical and Information Technologies for Rail Transportation, 895–904. Berlin: Springer.
Guo, R., S. N. Wang, and M. S. Huang. 2016. “Underground railway safety analysis and planning strategy: A case of Harbin Metro Line 1, China.” Procedia Eng. 165 (Jan): 575–582. https://doi.org/10.1016/j.proeng.2016.11.753.
Hayashiya, H., H. Itagaki, Y. Morita, Y. Mitomaet, T. Furukawa, T. Kuraoka, Y. Fukasawa, and T. Oikawa. 2012. “Potentials, peculiarities and prospects of solar power generation on the railway premises.” In Proc., 2012 Int. Conf. on Renewable Energy Research and Applications (ICRERA), 1–6. New York: IEEE.
Hodge, V. J., S. O’Keefe, M. Weeks, and A. Moulds. 2015. “Wireless sensor networks for condition monitoring in the railway industry: A survey.” IEEE Trans. Intell. Transp. Syst. 16 (3): 1088–1106. https://doi.org/10.1109/TITS.2014.2366512.
Jeong, C. K., et al. 2014. “Topographically-designed triboelectric nanogenerator via block copolymer self-assembly.” Nano Lett. 14 (12): 7031–7038. https://doi.org/10.1021/nl503402c.
Jiang, J. Q., B. B. Dong, Z. Ding, G. Wei, H. Zhang, and J. Liao. 2020. “Dynamic analysis of metro train-monolithic bed track system under tunnel differential settlement.” Shock Vib. 6 (Jun): 5632180. https://doi.org/10.1155/2020/5632180.
Jiang, J. Q., X. J. Wei, H. Zhang, and Z. Ding. 2014. “Free vibration of Timoshenko beams on elastic foundation with horizontal frictions.” J. Vib. Eng. Technol. 2 (3): 305–314.
Jin, L., et al. 2017. “Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system.” Nano Energy 38 (Aug): 185–192. https://doi.org/10.1016/j.nanoen.2017.05.018.
Liu, J., K. Jiang, L. Nguyen, Z. Li, and T. Thundat. 2019. “Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation.” Mater. Horizons. 6 (5): 1020–1026. https://doi.org/10.1039/c8mh01259h.
Lü, C. F., Y. Y. Zhang, H. Zhang, Z. C. Zhang, and Y. S. Chen. 2019. “Influences of environmental motion modes on the efficiency of ultrathin flexible piezoelectric energy harvesters.” Acta Mech. Solida Sin. 32 (5): 611–620. https://doi.org/10.1007/s10338-019-00085-8.
Lynch, J. P., K. H. Law, A. S. Kiremidjian, E. Carryer, C. R. Farrar, H. Sohn, D. W. Allen, B. Nadler, and J. R. Wait. 2004. “Design and performance validation of a wireless sensing unit for structural monitoring applications.” Struct. Eng. Mech. 17 (3–4): 393–408. https://doi.org/10.12989/sem.2004.17.3_4.393.
Niu, S. M., S. H. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. F. Hu, and Z. L. Wang. 2013. “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.” Energy Environ. Sci. 6 (12): 3576–3583. https://doi.org/10.1039/c3ee42571a.
Pasquale, G. D., A. Somà, and F. Fraccarollo. 2012. “Piezoelectric energy harvesting for autonomous sensors network on safety-improved railway vehicles.” Proc. Inst. Mech. Eng. Part C-J 226 (4): 1107–1117. https://doi.org/10.1177/0954406211418158.
Quan, Z. C., C. B. Han, T. Jiang, and Z. L. Wang. 2016. “Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy.” Adv. Energy Mater. 6 (5): 1501799. https://doi.org/10.1002/aenm.201501799.
Roundy, S., D. Steingart, L. Frechette, P. Wright, and J. Rabaey. 2004. “Power sources for wireless sensor networks.” In Wireless sensor networks, edited by H. Karl, A. Wolisz, and A. Willig, 1–17. Berlin: Springer.
Sari, I., T. Balkan, and H. Kulah. 2008. “An electromagnetic micro power generator for wideband environmental vibrations.” Sens. Actuator A-Phys. 145 (Jul): 405–413. https://doi.org/10.1016/j.sna.2007.11.021.
Seol, M. L., S. H. Lee, J. W. Han, D. Kim, G. H. Cho, and Y. K. Choi. 2015. “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures.” Nano Energy 17 (Oct): 63–71. https://doi.org/10.1016/j.nanoen.2015.08.005.
Stephen, N. G. 2006. “On energy harvesting from ambient vibration.” J. Sound Vib. 293 (1–2): 409–425. https://doi.org/10.1016/j.jsv.2005.10.003.
Tao, H., G. Batt, and J. Gibert. 2019a. “Modeling contact electrification in triboelectric impact oscillators as energy harvesters.” In Proc., SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers. https://doi.org/10.1117/12.2513949.
Tao, X., H. Jin, M. J. Ma, L. W. Quan, J. K. Chen, S. R. Dong, H. Zhang, C. F. Lv, Y. Q. Fu, and J. K. Luo. 2019b. “Significantly enhanced performance of triboelectric nanogenerator by incorporating BaTiO3 nanoparticles in poly(vinylidene fluoride) film.” Phys. Status Solidi A 216 (7): 1900068. https://doi.org/10.1002/pssa.201900068.
Vandenbosch, G. A. E., and Z. K. Ma. 2012. “Upper bounds for the solar energy harvesting efficiency of nano-antennas.” Nano Energy 1 (3): 494–502. https://doi.org/10.1016/j.nanoen.2012.03.002.
Xiang, T., K. X. Huang, H. Zhang, Y. Y. Zhang, Y. N. Zhang, and Y. H. Zhou. 2020. “Detection of moving load on pavement using piezoelectric sensors.” Sensors 20 (8): 2366. https://doi.org/10.3390/s20082366.
Yang, W., X. Wang, H. Li, J. Wu, and Y. Hu. 2018. “Comprehensive contact analysis for vertical-contact-mode triboelectric nanogenerators with micro-/nano-textured surfaces.” Nano Energy 51 (Sep): 241–249. https://doi.org/10.1016/j.nanoen.2018.06.066.
Zhang, H., K. X. Huang, Z. C. Zhang, T. Xiang, and L. W. Quan. 2019a. “Piezoelectric energy harvesting from roadways based on pavement compatible package.” J. Appl. Mech. 86 (9): 091012. https://doi.org/10.1115/1.4044140.
Zhang, H., L. W. Quan, J. K. Chen, C. K. Xu, C. H. Zhang, S. R. Dong, C. F. Lü, and J. K. Luo. 2019b. “A general optimization approach for contact separation triboelectric nanogenerator.” Nano Energy 56 (Feb): 700–707. https://doi.org/10.1016/j.nanoen.2018.11.062.
Zhang, H., M. Z. Shen, Y. Y. Zhang, Y. S. Chen, and C. F. Lü. 2018. “Identification of static loading conditions using piezoelectric sensor arrays.” J. Appl. Mech. 85 (1): 011008. https://doi.org/10.1115/1.4038426.
Zhang, H., H. G. Wang, J. W. Zhang, Z. C. Zhang, Y. Yu, J. K. Luo, and S. R. Dong. 2020a. “A novel rhombic-shaped paper-based triboelectric nanogenerator for harvesting energy from environmental vibration.” Sens. Actuator A-Phys. 302 (1): 111806. https://doi.org/10.1016/j.sna.2019.111806.
Zhang, H., L. J. Yao, L. W. Quan, and X. L. Zheng. 2020b. “Theories for triboelectric nanogenerators: A comprehensive review.” Nanotechnol. Rev. 9 (1): 610–625. https://doi.org/10.1515/ntrev-2020-0049.
Zhang, H., G. R. Ye, and Z. C. Zhang. 2013a. “Acoustic radiation of a cylindrical piezoelectric power transformer.” J. Appl. Mech. 80 (6): 061019. https://doi.org/10.1115/1.4023979.
Zhang, H., C. H. Zhang, J. W. Zhang, L. W. Quan, H. Y. Huang, J. Q. Jiang, S. R. Dong, and J. K. Luo. 2019c. “A theoretical approach for optimizing sliding-mode triboelectric nanogenerator based on multi-parameter analysis.” Nano Energy 61 (Jul): 442–453. https://doi.org/10.1016/j.nanoen.2019.04.057.
Zhang, H., J. W. Zhang, Z. W. Hu, L. W. Quan, L. Shi, J. K. Chen, W. P. Xuan, Z. C. Zhang, S. R. Dong, and J. K. Luo. 2019d. “Waist-wearable wireless respiration sensor based on triboelectric effect.” Nano Energy 59 (May): 75–83. https://doi.org/10.1016/j.nanoen.2019.01.063.
Zhang, L., et al. 2016a. “Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops.” Adv. Mater. 28 (8): 1650–1656. https://doi.org/10.1002/adma.201504462.
Zhang, X. S., M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, and H. X. Zhang. 2013b. “Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems.” Nano Lett. 13 (3): 1168–1172. https://doi.org/10.1021/nl3045684.
Zhang, X. T., Z. T. Zhang, H. Y. Pan, W. Salman, Y. P. Yuan, and Y. J. Liu. 2016b. “A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads.” Energy Conv. Manage. 118 (Jun): 287–294. https://doi.org/10.1016/j.enconman.2016.04.012.
Zhang, Y. Y., H. Zhang, C. F. Lv, Y. S. Chen, and J. Wang. 2020c. “Piezoelectric energy harvesting from roadway deformation under various traffic flow conditions.” J. Intell. Mater. Syst. Struct. 31 (15): 1751–1762. https://doi.org/10.1177/1045389X20930089.
Zhang, Z. C., J. W. Zhang, H. Zhang, H. G. Wang, Z. W. Hu, W. P. Xuan, S. R. Dong, and J. K. Luo. 2019e. “A portable triboelectric nanogenerator for real-time respiration monitoring.” Nanoscale Res. Lett. 14 (1): 354. https://doi.org/10.1186/s11671-019-3187-4.
Zhao, X. J., G. W. Wei, X. H. Li, Y. Qin, D. D. Xu, W. Tang, H. J. Yin, X. K. Wei, and L. M. Jia. 2017. “Self-powered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring.” Nano Energy 34 (Apr): 549–555. https://doi.org/10.1016/j.nanoen.2017.02.036.
Zhu, G., Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, and Z. L. Wang. 2013. “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator.” Nano Lett. 13 (2): 847–853. https://doi.org/10.1021/nl4001053.
Zi, Y. L., H. Y. Guo, Z. Wen, M. H. Yeh, C. G. Hu, and Z. L. Wang. 2016. “Harvesting low-frequency (>5  Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator.” ACS Nano 10 (4): 4797–4805. https://doi.org/10.1021/acsnano.6b01569.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 3June 2021

History

Received: May 31, 2020
Accepted: Dec 14, 2020
Published online: Feb 27, 2021
Published in print: Jun 1, 2021
Discussion open until: Jul 27, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, China. Email: [email protected]
Graduate Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, China. Email: [email protected]
Ph.D. Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, China. Email: [email protected]
Jiqing Jiang [email protected]
Professor, Dept. of Civil Engineering, Zhejiang Univ. City College, 51 Huzhou St., Hangzhou 310015, China (corresponding author). Email: [email protected]
Beibei Dong [email protected]
Graduate Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, China. Email: [email protected]
Professor, Dept. of Civil Engineering, Zhejiang Univ. City College, 51 Huzhou St., Hangzhou 310015, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effects of a Galfenol-Based Energy Harvester Installed at the Track Fastener on Track Vibration, Journal of Environmental Engineering, 10.1061/JOEEDU.EEENG-7073, 149, 8, (2023).
  • A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring, Applied Energy, 10.1016/j.apenergy.2023.120908, 337, (120908), (2023).
  • Triboelectric Nanogenerators for Civil Infrastructure Systems, Handbook of Triboelectric Nanogenerators, 10.1007/978-3-031-05722-9_35-1, (1-23), (2023).
  • Recent Progress in Sensing Technology Based on Triboelectric Nanogenerators in Dynamic Behaviors, Sensors, 10.3390/s22134837, 22, 13, (4837), (2022).
  • Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator, Journal of Marine Science and Engineering, 10.3390/jmse10101348, 10, 10, (1348), (2022).
  • Nano-fiber based self-powered flexible vibration sensor for rail fasteners tightness safety detection, Nano Energy, 10.1016/j.nanoen.2022.107667, 102, (107667), (2022).
  • Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering, Measurement, 10.1016/j.measurement.2022.112010, 203, (112010), (2022).
  • Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads, Applied Energy, 10.1016/j.apenergy.2022.119673, 323, (119673), (2022).
  • A real-time sensing system based on triboelectric nanogenerator for dynamic response of bridges, Science China Technological Sciences, 10.1007/s11431-022-2092-x, 65, 11, (2723-2733), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share