Abstract

Thermal batteries have become irreplaceable energy-storage devices in the field of high-temperature power supplies with the rapid development of energy technology. Electrolyte materials with a low melting point and high ionic conductivity are being widely studied. This paper presents a review of electrolytes (including halides and nitrates) used in thermal batteries. In addition, the electrochemical and physicochemical properties of different electrolytes are compared comprehensively and further discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the Science and Technology Major Project of Shanxi Province (Nos. 20181101014 and 20191102008); National Science Foundation of China (Nos. 51774254, 51774253, 51701187, 51674226, 51804279, and 51801189); Platform and Talent Project of Shanxi Province (No. 201805D211036); Guiding Local Science and Technology Development Projects by the Central Government (No. YDZX20191400002796); and Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province (No. 201804D131039). The authors are grateful for financial support from the Science and Technology Major Project of Shanxi Province (No. 2019SY427).

References

Bélaïd-Drira, N., H. Zamali, and M. Jemal. 1996. “Diagramme de phases du systeme binaire LiNO3-NaNO3.” J. Therm. Anal. 46 (5): 1449–1458. https://doi.org/10.1007/BF01979257.
Butler, P. C., R. A. Guidotti, and P. J. Masset. 2009. “Thermally activated batteries: Calcium.” In Encyclopedia of electrochemical power sources, 137–140. New York: Elsevier.
Chaojun, Y., C. Xiaohui, and Y. Shaohua. 2015. “Discharge performance of li-Si/LiNO3-KNO3-Ca(NO3)2/Cu3V2O8 thermal batteries for borehole equipment power sources.” [In Chinese.] J. Power Sources 39 (11): 2450–2452. https://doi.org/10.3969/j.issn.1002-087X.2015.11.035.
Chen, G. Z., and D. J. Fray. 2001. “Novel cathodic processes in molten salts.” In Proc., 6th Int. Symp. on Molten Salt Chemistry and Technology. Beijing: The Chinese Society for Metals.
Chunxiao, Z., and M. Shibo. 2010. “Application and development trend of hot battery in air-to-air missile.” [In Chinese.] Power Source Technol. 34 (6): 614–615. https://doi.org/10.3969/j.issn.1002-087X.2010.06.029.
Dalila, H., B. David, Z. Hmida, and R. Jacques. 2013. “Experimental study of phase equilibria in the (AgNO3+LiNO3+NaNO3) ternary system.” J. Chem. Thermodyn. 66 (Nov): 102–115. https://doi.org/10.1016/j.jct.2013.06.013.
Duan, C. 2012. “Technical countermeasures for long-life thermal battery.” [In Chinese.] Power Technol. 36 (8): 1248–1249. https://doi.org/10.3969/j.issn.1002- 087X.2012.08.051.
Fernández, A. G., S. Ushak, H. Galleguillos, and F. J. Pérez. 2014. “Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants.” Appl. Energy 119 (Apr): 130–140. https://doi.org/10.1016/j.apenergy.2013.12.061.
Flor, G., C. Margheritas, and C. Sinistri. 1975. “Miscibility gaps in fused salts Note VIII. Mixtures formed by lif and two alkali bromides.” Z. Naturforsch. A 30 (6–7): 821–824. https://doi.org/10.1515/zna-1975-6-717.
Gao, J. 2000. “Experimental study on the performance of molten salt electrolyte for thermal battery.” [In Chinese.] Shanghai Aerosp. 17 (4): 60–64. https://doi.org/10.3969/j.issn.1006-1630.2000.04.015.
Gong, Y. 1998. “Progress in the study of dissolved salt electrolyte for thermal battery.” In Proc., National Conf. on Chemical and Physical Power Supply. Beijing: Chinese Institute of Electronics.
Greis, O., K. M. Bahamdan, and B. M. Uwais. 1985. “ChemInform abstract: Phase diagram of the system NaNO3-KNO3 studied by differential scanning calorimetry.” Chemischer Informationsdienst 16 (28): 22–25. https://doi.org/10.1002/chin.198528024.
Guan, D. 2017. “Study on the discharge performance of the lithium hot-melt salt battery at low temperature.” [In Chinese.] Ph.D. dissertation, School of Chemical Engineering, Shenyang Ligong Univ.
Guidotti, R., A. Ronald, and F. W. Reinhardt. 1994. “Electrolyte effects in Li(Si)/FeS2 thermal batteries.” In Proc., Int. Power Sources Symp. Albuquerque, NM: Sandia National Laboratory.
Guidotti, R. A., and P. Masset. 2006. “Thermally activated (‘thermal’) battery technology.” J. Power Sources 161 (2): 1443–1449. https://doi.org/10.1016/j.jpowsour.2006.06.013.
Guidotti, R. A., and P. J. Masset. 2009. “Thermally activated batteries: Lithium.” In Encyclopedia of electrochemical power sources, 141–155. New York: Elsevier.
Guidotti, R. A., F. W. Reinhardt, J. Dai, and D. E. Reisner. 2006. “Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes.” J. Power Sources 160 (2): 1456–1464. https://doi.org/10.1016/j.jpowsour.2006.02.025.
Guidotti, R. A., G. L. Scharrer, and F. W. Reinhardt. 2000. Development of a high-power and high-energy thermal battery. Office of Scientific and Technical Information Technical Rep.
Guo, J. 2000. “Experimental study on the performance of molten salt electrolyte for thermal battery.” [In Chinese.] Shanghai Aerosp. 4: 62–64. https://doi.org/10.3969/j.issn.1006-1630.2000.04.015.
Janz, G. J., R. P. T. Tomkins, C. B. Allen, J. R. Downey Jr., and S. K. Singer. 1977. “Bromides and mixtures; Iodides and mixtures-electrical conductance, density, viscosity, and surface tension data.” J. Phys. Chem. Ref. Data 6 (2): 409–596. https://doi.org/10.1063/1.555552.
Janz, G. J., and G. N. Truong. 1983. “Melting and premelting properties of the potassium nitrate sodium nitrite-sodium nitrate eutectic system.” J. Chem. Eng. 28 (2): 502–507. https://doi.org/10.1021/je00032a022.
Johnson, C. A., S. Barnartt, and F. D. Glasser. 1971. “Errata: Concentration reversion in potentiostatic kinetics.” Electrochem. Soc. 118 (9): 1442. https://doi.org/10.1149/1.2408349.
Johnson, C. E., and E. J. Hathaway. 1969. “Lithium hydride systems: Solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium iodide system.” J. Chem. Eng. Data 14 (2): 174–175. https://doi.org/10.1021/je60041a028.
Kamiyama, T., A. Fukase, N. Asahi, and Y. Nakamura. 1999. “Ionic transport properties in the molten LiCl-LiI system.” J. Mol. Liq. 83 (1): 51–56. https://doi.org/10.1016/S0167-7322(99)00071-9.
Kang, Z., M. He, G. Lu, and Y. Zhang. 2016. “A density model based on the modified quasichemical model and applied to the (LiCl+KCl+CsCl) liquid.” Calphad 55 (Dec): 208–218. https://doi.org/10.1016/j.calphad.2016.09.005.
Karoui, N. K., D. Hellali, A. Saidi, and H. Zamali. 2016. “The phase diagram of the isobaric binary system (NaNO3+RbNO3).” J. Thermal Anal. Calorim. 124 (3): 1145–1151. https://doi.org/10.1007/s10973-015-5226-4.
Kobayashi, K., H. Nakajima, T. Goto, and Y. Ito. 2005. “Thermodynamics of the N2/N3-redox couple in a LiBr-KBr-CsBr melt.” J. Phys. Chem. B 109 (50): 23972–23975. https://doi.org/10.1021/jp053920i.
Kuper, W. E. 1994. “Electronics and electrical engineering.” In Proc., 36th Power Sources Conf., 300.
Leiser, D. B., and O. J. Whittemore. 1967. “The system LiI-KI.” J. Am. Ceram. Soc. 50 (1): 60. https://doi.org/10.1111/j.1151-2916.1967.tb14977.x.
Li, Y., Y. Yu, P. Li, and G. Liu. 2018. “Thermal stability analysis of LiNO3-KNO3 binary mixed nitrate.” [In Chinese.] J. Shanghai Electr. Power Univ. 34 (1): 37–40.
Liu, G. 2007. Introduction to new chemical power supply technology. Shanghai, China: Shanghai Science and Technology Press.
Liu, Z. 2006. “Study on activation time of thermal battery.” [In Chinese.] Explos. Dev. 6: 28–31. https://doi.org/10.3969/j.issn.1003-1480.2006.06.009.
Lushchikova, O. I., E. I. Frolov, T. V. Gubanova, and I. K. Garkushin. 2013. “LiF-LiCl-LiBr-Li2MoO4 quaternary system.” Russ. J. Inorg. Chem. 58 (1): 102–106. https://doi.org/10.1134/S0036023613010130.
Mantha, D., T. Wang, and R. G. Reddy. 2012. “Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 thernary system.” J. Phase Equilib. Diffus. 33 (2): 110–114. https://doi.org/10.1007/s11669-012-0005-4.
Mantha, D., T. Wang, and R. G. Reddy. 2013. “Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3-NaNO2 quaternary system.” Solar Energy Mater. Solar Cells 118 (Nov): 18–21. https://doi.org/10.1016/j.solmat.2013.06.023.
Masset, P., A. Henry, J. Poinso, and J. Poignet. 2006. “Ionic conductivity measurements of molten iodide-based electrolytes.” J. Power Sources 160 (1): 752–757. https://doi.org/10.1016/j.jpowsour.2006.01.014.
Masset, P., A. Ronald, and R. A. Guidotti. 2007. “Thermal activated (thermal) battery technology. Part II: Molten salt electrolytes.” J. Power Sources 164 (1): 397–414. https://doi.org/10.1016/j.jpowsour.2006.10.080.
McManis, G. E., M. H. Miles, and A. N. Fletcher. 1985. “Discharge characteristics of lithium molten nitrate thermal battery cells using silver sault as solid cathode materials.” J. Power Sources 16 (4): 243–251. https://doi.org/10.1016/0378-7753(85)80089-6.
Oster, L. 1973. “Progress in high temperature physics and chemistry.” J. Phys. Am. 41 (2): 304–305. https://doi.org/10.1119/1.1987213.
Oxley, J. C., J. L. Smith, E. Rogers, and M. Yu. 2002. “Ammonium nitrate: Thermal stability and explosivity modifiers.” Thermochim. Acta 384 (1–2): 23–45. https://doi.org/10.1016/S0040-6031(01)00775-4.
Patrick, M. 2006. “Iodide-based electrolytes: A promising alternative for thermal batteries.” J. Power Source 160 (1): 688–697. https://doi.org/10.1016/j.jpowsour.2005.12.091.
Redey, L., and R. A. Guidotti. 1996. “Re-evaluation of the eutectic region of the LiBr-KBr-LiF system.” In Proc., 37th Power Sources Conf., 255. Albuquerque, NM: Sandia National Laboratories. https://doi.org/10.2172/238472.
Redey, L., M. McParland, and R. Guidotti. 2002. “Resistivity measurements of halide-salt/MgO separators for thermal cells.” In Proc., 34th Int. Power Sources Symp. Lemont, IL: Argonne National Laboratory.
Roget, F., C. Favotto, and J. Rogez. 2013. “Study of the KNO3-LiNO3 and KNO3-NaNO3-LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant.” Sol. Energy 95 (Sep): 155–169. https://doi.org/10.1016/j.solener.2013.06.008.
Sangster, J., and A. D. Pelton. 1987. “Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions.” J. Phys. Chem. Ref. Data 16 (3): 509–561. https://doi.org/10.1063/1.555803.
Shen, J., Y. Wang, G. Yu, and H. Li. 2020. “Thermal management of prismatic lithium-ion battery with minichannel cold plate.” J. Energy Eng. 146 (1): 04019033. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000621.
Shi, Z. 2014. “Development progress of thermal battery abroad.” [In Chinese.] Power Source Technol. 38 (6): 1187–1189. https://doi.org/10.3969/j.issn.1002-087X.2014.06.062.
Song, X., X. Liu, and L. Liu. 2012. “Control of electrolyte flow inhibitors for thermal batteries.” [In Chinese.] Battery Ind. 17 (2): 70–74. https://doi.org/10.3969/j.issn.1008-7923.2012.02.002.
Swinkels, D. A. 1971. Advances in molten salt chemistry, 165–223. New York: Plenum.
Syozo, F., K. Fumio, W. Syouichiro, I. Minoru, and T. Akimasa. 2009. “New iodide-based molten salt systems for high temperature molten salt batteries.” J. Power Sources 194 (2): 1180–1183. https://doi.org/10.1016/j.jpowsour.2009.06.063.
Syozo, F., I. Minoru, and T. Akimasa. 2010. “New molten salt systems for high-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems.” J. Power Sources 195 (22): 7691–7700. https://doi.org/10.1016/j.jpowsour.2010.05.032.
Vissers, D. R., L. Redey, and T. D. Kaun. 1989. “Molten sault electrolytes for high-temperature lithium.” J. Power Sources 26 (1): 37–48. https://doi.org/10.1016/0378-7753(89)80013-8.
Wang, C. 2012. “A review of the development of thermal batteries.” [In Chinese.] Power Source Technol. 37 (11): 2077–2079. https://doi.org/10.3969/j.issn.1002-087X.2013.11.059.
Wang, K., J. Cheng, P. Zhang, Y. Zuo, and L. Xie. 2014. “Phase diagram calculation of LiF-NaF-KF system.” [In Chinese.] J. Univ. Sci. Technol. Beijing 36 (12): 1667–1675. https://doi.org/10.13374/j.issn1001-053x.2014.12.014.
Wang, Q., Z. Tanbg, B. Zhao, J. Dong, J. Cao, and C. Yu. 2007. “Research progress of using low eutectic nitrate as electrolyte for thermal battery.” [In Chinese.] Power Technol. 31 (3): 246–248. https://doi.org/10.3969/j.issn.1002-087X.2007.03.022.
Wang, T., D. Mantha, and R. G. Reddy. 2012. “Thermal stability of the eutectic composition in LiNO3-NaNO3-KNO3 ternary system used for thermal energy storage.” Sol. Energy Mater. Sol. Cells 100 (100): 162–168. https://doi.org/10.1016/j.solmat.2012.01.009.
Wang, T., D. Mantha, and R. G. Reddy. 2013. “Thermodynamic properties of LiNO3-NaNO3-KNO3-2KNO3·Mg(NO3)2 system.” Thermochim. Acta 551: 92–98. https://doi.org/10.1016/j.tca.2012.12.015.
Wu, Y., T. Wang, C. Ma, and N. Ren. 2012. “Preparation and performance of binary mixed nitrate.” Acta Solar Energy Sin. 33 (1): 148–152. https://doi.org/10.3969/j.issn.0254-0096.2012.01.025.
Xu, F., J. Wang, X. Zhu, and X. Liu. 2017. “Thermodynamic modeling and experimental verification of the NaNO3-KNO3-LiNO3-Ca(NO3)2 system for solar thermal energy storage.” New J. Chem. 41 (18): 10376–10382. https://doi.org/10.1039/C7NJ02051A.
Yang, X., X. Song, W. Lan, and X. Liu. 2017. “Optimization of electrolyte adhesive MgO in lithium thermal batter.” Power Technol. 41 (12): 1753–1756. https://doi.org/10.3969/j.issn.1002-087X.2017.12.025.
Yang, Y. 1997. “The development history, present situation and prospect of chemical and physical power supply in China.” Power Supp Technol. 7 (5): 28–33. https://doi.org/CNKI:SUN:DYJS.0.1997-05-007.
Yao, N. P., and D. N. Bennion. 1971. “Transport behavior in dimethyl sulfoxide.” J. Electrochem. Soc. 118 (7): 1097. https://doi.org/10.1149/1.2408254.
Yongqiang, N., W. Zhu, D. Junlin, and P. Chaohui. 2014a. “Characterization of Li-Mg-Balloy/LiNO3-KNO3-KNO2-Ca(NO3)2/MnO2.” Solid State Ion. 255 (Feb): 80–83. https://doi.org/10.1016/j.electacta.2013.11.030.
Yongqiang, N., W. Zhu, D. Junlin, and P. Chaohui. 2014b. “Discharge behavior of Li-Mg-Balloy/MnO2 couples with LiNO3-KNO3-Mg(OH)NO3 eutectic electrolyte.” Electrochim. Acta 115: 607–611. https://doi.org/10.1016/j.electacta.2013.11.030.
Yongqiang, N., W. Zhu, D. Junlin, and D. Weiyuan. 2014c. “A new thermal battery for powering borehole equipment: The discharge performance of Li-Mg-Balloy/LiNO3-KNO3/MnO2 cells at high temperatures.” J. Power Sources 245 (Jan): 537–542. https://doi.org/10.1016/j.jpowsour.2013.06.140.
Yuan, X., M. Wei, L. Wen, and H. Yang. 2010. “Research progress on anode materials for thermal battery.” J. Ceram. 31 (4): 663–669.
Zhang, M., and Z. Wang. 2006. Electrochemical principle and application of molten salt. Beijing: Chemical Industry Press.
Zhang, Y., M. Zhao, D. Tang, and P. Li. 1990. “Phase diagram determination of LiCl a molten salt system by direct sampling method preparation of ternary phase diagram of LiCl-KCl-LiF.” Acta Chem. Sin. 48 (7): 644–647. https://doi.org/10.3891/acta.chem.scand.44-0108.
Zhao, B. 2014. “Research and application of new electrode materials for thermal battery.” Master’s thesis, School of Chemical Engineering, Tianjin Univ.
Zhao, G., Y. Xu, J. Bian, C. Zhang, and D. Chen. 2008. “Progress of thermal battery technology and its application in fuze.” [In Chinese.] J. Detect. Control 30 (6): 64–68. https://doi.org/10.3969/j.issn.1008-1194.2008.06.016.
Zhao, Y., X. Bai, Y. Xing, and Y. Wang. 2018. “Application of LiF-LiCl-LiBr-KCl electrolytes in long-working thermal batteries.” [In Chinese.] Power Technol. 42 (7): 1040–1041. https://doi.org/CNKI:SUN:DYJS.0.2018-07-037.
Zhong, J., J. Dong, X. Zhang, J. Zhu, and J. Wang. 2007. “Study on the difference of performance of LiB/FeS2 thermal batteries with two common electrolyte systems and their influencing mechanism.” [In Chinese.] J. Chin. Acad. Electron. 2 (4): 365–370. https://doi.org/10.3969/j.issn.1673-5692.2007.04.008.
Zhong, J., S. Dong, and J. Zhu. 2003. “Overview of development of high energy long life thermal battery and its thermal insulation materials.” [In Chinese.] Power Source Technol. 27 (2): 137–140. https://doi.org/10.3969/j.issn.1002-087X.2003.02.018.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 3June 2021

History

Published online: Feb 26, 2021
Published in print: Jun 1, 2021
Discussion open until: Jul 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Student, School of Materials Science and Engineering, North Univ. of China, Taiyuan, Shanxi 030051, China. ORCID: https://orcid.org/0000-0002-6262-4738. Email: [email protected]
Yuhong Zhao [email protected]
Professor, School of Materials Science and Engineering, North Univ. of China, Taiyuan, Shanxi 030051, China (corresponding author). Email: [email protected]
Yongqiang Niu [email protected]
Lecturer, School of Materials Science and Engineering, North Univ. of China, Taiyuan, Shanxi 030051, China. Email: [email protected]
Jingxia Ren [email protected]
Master’s Student, School of Materials Science and Engineering, North Univ. of China, Taiyuan, Shanxi 030051, China. Email: [email protected]
Professor, School of Materials Science and Engineering, North Univ. of China, Taiyuan, Shanxi 030051, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Low resistance separator with hexagonal boron nitride (h-BN) binder for high power thermal battery, Materials Chemistry and Physics, 10.1016/j.matchemphys.2022.127221, 296, (127221), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share