State-of-the-Art Reviews
Feb 9, 2021

A Review of Thermal Management System and Control Strategy for Automotive Engines

Publication: Journal of Energy Engineering
Volume 147, Issue 2

Abstract

This article reviews the main development of advanced components and control algorithms in engine thermal management systems (TMS). First, the limitations in traditional mechanical coolant pumps, radiator fans, and thermostats are discussed, such as waste of power and poor temperature control. To solve these problems, replacing the executors of TMS with electric components and intelligent control schemes is possible. The development status and characteristics of electric fans, pumps, thermostats, cooling systems, and an advanced cooling concept and cooling medium are summarized, all of which contribute to the improved efficiency of TMS. The reliability of the system is directly affected by the control strategies; therefore, the research progress of different control algorithms, including proportional-integral-derivative (PID), Smith predictor, model predictive control (MPC), active disturbance rejection control (ADRC), Lyapunov, fuzzy control algorithms, are reviewed. In addition, the current methods of building zero-/one-/three-dimensional simulation object models used for control algorithm development are then summarized. Finally, the coordinated development of electric components and control strategies are concluded to have great significance in improving the fuel economy and safety of internal combustion engines.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was supported by the National Key Research and Development Program of China Grant No. (2017YFB0103501) and by the National Natural Science Foundation of China Grant No. (51922076).

References

Agarwal, N., F. Chiara, and M. Canova. 2012. “Control-oriented modeling of an automotive thermal management system.” IFAC Proc. 45 (30): 392–399. https://doi.org/10.3182/20121023-3-FR-4025.00051.
Andrews, G. E., A. M. Ounzain, H. Li, M. Bell, J. Tate, and K. Ropkins. 2007. The use of a water/lube oil heat exchanger and enhanced cooling water heating to increase water and lube oil heating rates in passenger cars for reduced fuel consumption and CO2 emissions during cold start. Warrendale, PA: SAE International.
Ap, N.-S., and M. Tarquis. 2005. Innovative engine cooling systems comparison. Warrendale, PA: SAE International.
Arici, O., J. H. Johnson, and A. J. Kulkarni. 1999. The vehicle engine cooling system simulation Part 1—Model development. Warrendale, PA: SAE International.
Bai, S., J. Han, M. Liu, S. Qin, G. Wang, and G. X. Li. 2018. “Experimental investigation of exhaust thermal management on NOx emissions of heavy-duty diesel engine under the world Harmonized transient cycle (WHTC).” Appl. Therm. Eng. 142 (Sep): 421–432. https://doi.org/10.1016/j.applthermaleng.2018.07.042.
Banjac, T., J. C. Wurzenberger, and T. Katrašnik. 2014. “Assessment of engine thermal management through advanced system engineering modeling.” Adv. Eng. Software 71 (71): 19–33.
Bäroth, T., A. Drochner, H. Vogel, and M. Votsmeier. 2017. “Effect of diverse hydrocarbons on the cold start behavior of three-way catalysts.” Top. Catal. 60 (3–5): 278–282. https://doi.org/10.1007/s11244-016-0609-8.
Battista, D. D., and R. Cipollone. 2016. “Experimental and numerical assessment of methods to reduce warm up time of engine lubricant oil.” Appl. Energy 162 (Jan): 570–580. https://doi.org/10.1016/j.apenergy.2015.10.127.
Bayraktar, I. 2012. “Computational simulation methods for vehicle thermal management.” Appl. Therm. Eng. 36 (Apr): 325–329. https://doi.org/10.1016/j.applthermaleng.2011.10.040.
Bent, E., P. Shayler, A. La Rocca, and C. Rouaud. 2013. “The effectiveness of stop-start and thermal management measures to improve fuel economy.” In Vehicle Thermal Management Systems Conf. Proc. (VTMS11), 2027-2039. Cambridge, UK: Woodhead Publishing.
Bova, S., T. Castiglione, R. Piccione, and F. Pizzonia. 2015a. “A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines.” Appl. Energy 143 (Apr): 271–282. https://doi.org/10.1016/j.apenergy.2015.01.047.
Bova, S., T. Castiglione, R. Piccione, F. Pizzonia, and M. Belli. 2015b. “Experimental investigation and lumped-parameter model of the cooling system of an ICE under nucleate boiling conditions.” Energy Procedia 81 (Dec): 907–917. https://doi.org/10.1016/j.egypro.2015.12.145.
Brace, C. J., H. Burnham-Slipper, R. S. Wijetunge, N. D. Vaughan, K. Wright, and D. Blight. 2001. Integrated cooling systems for passenger vehicles. Warrendale, PA: SAE International.
Brace, C. J., G. Hawley, S. Akehurst, M. Piddock, and I. Pegg. 2008. “Cooling system improvements—Assessing the effects on emissions and fuel economy.” Proc. Inst. Mech. Eng. Part D 222 (4): 579–591. https://doi.org/10.1243/09544070JAUTO685.
Burke, R. D., A. J. Lewis, S. Akehurst, C. J. Brace, I. Pegg, and R. Stark. 2012. “Systems optimisation of an active thermal management system during engine warm-up.” Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 226 (10): 1365–1379. https://doi.org/10.1177/0954407012441883.
Caresana, F., M. Bilancia, and C. M. Bartolini. 2011. “Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car.” Appl. Therm. Eng. 31 (16): 3559–3568. https://doi.org/10.1016/j.applthermaleng.2011.07.017.
Castiglione, T., S. Bova, and M. Belli. 2016b. “A model predictive controller for the cooling system of internal combustion engines.” Energy Procedia 101 (Nov): 582–589. https://doi.org/10.1016/j.egypro.2016.11.074.
Castiglione, T., F. Pizzonia, R. Piccione, and S. Bova. 2016a. “Detecting the onset of nucleate boiling in internal combustion engines.” Appl. Energy 164 (Feb): 332–340. https://doi.org/10.1016/j.apenergy.2015.11.083.
Chalgren, R. D. 2004. Thermal comfort and engine warm-up optimization of a low-flow advanced thermal management system. Warrendale, PA: SAE International.
Chalgren, R. D., and D. J. Allen. 2005. Light duty diesel advanced thermal management. Warrendale, PA: SAE International.
Chanfreau, M., A. Joseph, D. Butler, and R. Swiatek. 2001. Advanced engine cooling thermal management system on a dual voltage 42V-14V minivan. Warrendale, PA: SAE International.
Chao, H., G. Yunshan, M. Chaochen, T. Jianwei, L. Zhihua, W. Chu, Y. Linxiao, and D. Yan. 2011. “Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.” Sci. Total Environ. 409 (17): 3138–3143. https://doi.org/10.1016/j.scitotenv.2011.01.029.
Chao, Z., F. Mao, H. Li, X. Liu, and S. Han. 2016. “The hydraulic-driven fan speed control system research based on fuzzy PID.” In Proc., 2016 Int. Conf. on Robots & Intelligent System Institute of Electrical and Electronics Engineers, 444–448. New York: IEEE.
Chastain, J., J. Wagner, and J. Eberth. 2010. “Advanced engine cooling–Components, testing and observations.” IFAC Proc. 43 (7): 294–299. https://doi.org/10.3182/20100712-3-DE-2013.00007.
Chen, X., X. Yu, Y. Lu, H. Rui, Z. Liu, Y. Huang, and A. P. Roskilly. 2017. “Study of different cooling structures on the thermal status of an internal combustion engine.” Appl. Therm. Eng. 116 (Apr): 419–432. https://doi.org/10.1016/j.applthermaleng.2017.01.037.
Chipman, J. C., W. Houtz, and M. Shillor. 2000. “Simulations of a thermostat model I: Approach to steady states.” Math. Comput. Model. 32 (7): 765–790. https://doi.org/10.1016/S0895-7177(00)00170-9.
Cho, H., D. Jung, Z. S. Filipi, D. N. Assanis, J. Vanderslice, and W. Bryzik. 2007. “Application of controllable electric coolant pump for fuel economy and cooling performance improvement.” J. Eng. Gas Turbines Power 129 (1): 239–244. https://doi.org/10.1115/1.2227035.
Cipollone, R., and D. D. Battista. 2015. “Sliding vane rotary pump in engine cooling system for automotive sector.” Appl. Therm. Eng. 76 (Feb): 157–166. https://doi.org/10.1016/j.applthermaleng.2014.11.001.
Cipollone, R., D. D. Battista, and A. Gualtieri. 2012. “Head and block split cooling in ICE.” IFAC Proc. 45 (30): 400–407. https://doi.org/10.3182/20121023-3-FR-4025.00056.
Cipollone, R., D. D. Battista, and A. Gualtieri. 2013. “A novel engine cooling system with two circuits operating at different temperatures.” Energy Convers. Manage. 75 (11): 581–592. https://doi.org/10.1016/j.enconman.2013.07.010.
Couëtouse, H., and D. Gentile. 1992. Cooling system control in automotive engines.. Warrendale, PA: SAE International.
Cui, Y., H. Liu, C. Geng, Q. Tang, L. Feng, Y. Wang, W. Yi, Z. Zheng, and M. Yao. 2020. “Optical diagnostics on the effects of fuel properties and coolant temperatures on combustion characteristic and flame development progress from HCCI to CDC via PPC.” Fuel 269 (Jun): 117441. https://doi.org/10.1016/j.fuel.2020.117441.
Eberth, J. F., J. R. Wagner, B. A. Afshar, and R. C. Foster. 2004. Modeling and validation of automotive ‘smart’ thermal management system architectures. Warrendale, PA: SAE International.
Farrant, P. E., A. Robertson, J. Hartland, and S. Joyce. 2005. The application of thermal modelling to an engine and transmission to improve fuel consumption following a cold start. Warrendale, PA: SAE International.
Finlay, I. C., G. R. Gallacher, T. W. Biddulph, and R. A. Marshall. 1988. The application of precision cooling to the cylinder-head of a small, automotive, petrol engine.. Warrendale, PA: SAE International.
Fu, J., J. Liu, R. Feng, Y. Yang, L. Wang, and Y. Wang. 2013. “Energy and exergy analysis on gasoline engine based on mapping characteristics experiment.” Appl. Energy 102 (Feb): 622–630. https://doi.org/10.1016/j.apenergy.2012.08.013.
Gong, Y. F., S. H. Liu, H. J. Guo, T. G. Hu, and L. B. Zhou. 2007. “A new diesel oxygenate additive and its effects on engine combustion and emissions.” Appl. Therm. Eng. 27: 202–207.
Gumus, M. 2009. “Reducing cold-start emission from internal combustion engines by means of thermal energy storage system.” Appl. Therm. Eng. 29 (4): 652–660. https://doi.org/10.1016/j.applthermaleng.2008.03.044.
Guo, X. M., L. Zhai, P. Gao, and X. Y. Wang. 2001. “Research on intelligent cooling system of automotive engine.” [In Chinese.] Chin. Internal Combust. Eng. Eng. 22 (1): 15–16.
Haghighat, A. K., S. Roumi, N. Madani, D. Bahmanpour, and M. G. Olsen. 2018. “An intelligent cooling system and control model for improved engine thermal management.” Appl. Therm. Eng. 128 (Jan): 253–263. https://doi.org/10.1016/j.applthermaleng.2017.08.102.
Han, S. 2012. “Research on basic problems of intelligent cooling system for vehicle engine.” [In Chinese.] Ph.D. thesis, College of Energy Engineering of Zhejiang Univ.
Heywood, J. B. 1988. A textbook of internal combustion engine fundamentals. New York: McGraw-Hill College.
Hong, T., M. Rakotovao, M. Henner, S. Moreau, and J. Savage. 2001. Thermal analysis of electric motors in engine cooling fan systems.. Warrendale, PA: SAE International.
Iodice, P., and A. Senatore. 2012. Analysis of a scooter emission behavior in cold and hot conditions: Modelling and experimental investigations. Warrendale, PA: SAE International.
Iodice, P., and A. Senatore. 2015. Engine and after-treatment system performance within the cold start transient: New modelling and experiments. Warrendale, PA: SAE International.
Jaspar, J., N. Mcloughlin, and P. Bellew. 2003. Circuit protection components for future vehicle electrical systems. Heidelberg: Springer.
Johnson, T. V. 2014. Vehicular emissions in review. Warrendale, PA: SAE International.
Jung, D., J. Yong, H. Choi, H. Song, and K. Min. 2013. “Analysis of engine temperature and energy flow in diesel engine using engine thermal management.” J. Mech. Sci. Technol. 27 (2): 583–592. https://doi.org/10.1007/s12206-012-1235-4.
Kang, H., H. Ahn, and K. Min. 2015. “Smart cooling system of the double loop coolant structure with engine thermal management modeling.” Appl. Therm. Eng. 79 (Mar): 124–131. https://doi.org/10.1016/j.applthermaleng.2014.12.042.
Kenny A. A., C. F. Bradshaw, and B. T. Creed. 1988. Electronic thermostat system for automotive engines. Warrendale, PA: SAE International.
Kern, J., and P. Ambros. 1997. Concepts for a controlled optimized vehicle engine cooling system. Warrendale, PA: SAE International.
Khaled, M., M. Ramadan, H. El-Hage, A. Elmarakbi, F. Harambat, and H. Peerhossaini. 2014. “Review of underhood aerothermal management: Towards vehicle simplified models.” Appl. Therm. Eng. 73 (1): 842–858. https://doi.org/10.1016/j.applthermaleng.2014.08.037.
Kim, K. B., K. W. Choi, K. H. Lee, and K. S. Lee. 2010. “Active coolant control strategies in automotive engines.” Int. J. Automot. Technol. 11 (6): 767–772. https://doi.org/10.1007/s12239-010-0091-4.
LaGrandeur, J., D. Crane, S. Hung, B. Mazar, and A. Eder. 2006. “Automotive waste heat conversion to electric power using Skutterudite, TAGS, PbTe and BiTe.” In Proc., 25th Int. Conf. on Thermoelectrics. New York: IEEE.
Law, T. S. P., and I. Pegg. 2007. “Investigations of sump design to improve the thermal management of oil temperature during engine warm up.” In Vehicle thermal management systems conf. & exhibition. Nottingham, UK: Chandos Publishing.
Li, S., C. Shan, X. Wang, and L. Kong. 2011. “Based on intelligent controller design of automotive engine cooling in AVR microcontroller.” In Proc., IEEE Int. Conf. on Automation and Logistics, 254–260. New York: IEEE.
Lim, D. H., S. C. Kim, and M. S. Kim. 2013. “Thermal analysis of an electric water pump for internal combustion engine vehicles.” Int. J. Automot. Technol. 14 (4): 579–585. https://doi.org/10.1007/s12239-013-0062-7.
Liu, H. F., Q. Tang, X. Ran, X. Fang, and M. Yao. 2019. “Optical diagnostics on the reactivity controlled compression ignition (RCCI) with micro direct-injection strategy.” Proc. Combust. Inst. 37 (4): 4767–4775. https://doi.org/10.1016/j.proci.2018.06.180.
Lu, P., Q. Gao, and W. Yan. 2016. “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management.” Appl. Therm. Eng. 104 (Jul): 42–53. https://doi.org/10.1016/j.applthermaleng.2016.05.047.
Luptowski, B. J., O. Arici, J. H. Johnson, and G. G. Parker. 2005. Development of the enhanced vehicle and engine cooling system simulation and application to active cooling control. Warrendale, PA: SAE International.
Mao, S., Z. Feng, and E. E. Michaelides. 2010. “Off-highway heavy-duty truck under-hood thermal analysis.” Appl. Therm. Eng. 30 (13): 1726–1733. https://doi.org/10.1016/j.applthermaleng.2010.04.002.
Millo, F., S. Caputo, C. Cubito, A. Calamiello, D. Mercuri, and M. Rimondi. 2016. Numerical simulation of the warm-up of a passenger car diesel engine equipped with an advanced cooling system.. Warrendale, PA: SAE International.
Mitchell, T., M. Salah, J. Wagner, and D. Dawson. 2009. “Automotive thermostat valve configurations: Enhanced warm-up performance.” J. Dyn. Syst. Meas. Control 131 (4): 442–447. https://doi.org/10.1115/1.3117183.
Mohamed, E. S. 2016. “Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC.” Appl. Therm. Eng. 99 (Apr): 358–372. https://doi.org/10.1016/j.applthermaleng.2015.12.099.
Negandhi, V., D. Jung, and J. Shutty. 2013. Active thermal management with a dual mode coolant pump. Warrendale, PA: SAE International.
Page, R., R. Bedogne, T. Steinmetz, and A. A. T. Bryant. 2006. A ‘mini-hybrid’ transit bus with electrified cooling system. Warrendale, PA: SAE International.
Page, R. W., W. J. Hnatczuk, and J. Kozierowski. 2005. Thermal management for the 21st century - Improved thermal control & fuel economy in an army medium tactical vehicle. Warrendale, PA: SAE International.
Pang, H. H., and C. J. Brace. 2004. “Review of engine cooling technologies for modern engines.” Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 218 (11): 1209–1215. https://doi.org/10.1243/0954407042580110.
Peyghambarzadeh, S. M., S. H. Hashemabadi, M. S. Jamnani, and S. M. Hoseini. 2011. “Improving the cooling performance of automobile radiator with Al2O3/water nanofluid.” Appl. Therm. Eng. 31 (10): 1833–1838. https://doi.org/10.1016/j.applthermaleng.2011.02.029.
Pizzonia, F., T. Castiglione, and S. Bova. 2016. “A robust model predictive control for efficient thermal management of internal combustion engines.” Appl. Energy 169 (May): 555–566. https://doi.org/10.1016/j.apenergy.2016.02.063.
Raja, M., R. Vijayan, S. Suresh, and R. Vivekananthan. 2013. “Effect of heat transfer enhancement and NOx emission using AL2O3/water nanofluid as coolant in CI engine.” Indian J. Eng. Mater. Sci. 20 (5): 443–449.
Ribeiro, E. G., W. B. Melo, and A. P. A. Filho. 2005. Application of electric oil pumps on automotive systems. Warrendale, PA: SAE International.
Roberts, A., R. Brooks, and P. Shipway. 2014. “Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions.” Energy Convers. Manage. 82: 327–350. https://doi.org/10.1016/j.enconman.2014.03.002.
Rostek, E., M. Babiak, and E. Wróblewski. 2017. “The influence of oil pressure in the engine lubrication system on friction losses.” Procedia Eng. 192 (Jan): 771–776. https://doi.org/10.1016/j.proeng.2017.06.133.
Rouaud, C., A. Marchi, and B. Cooper. 2011. “Integrated thermal management for a downsized diesel engine with low CO2 emissions.” In Vehicle Thermal Management Systems Conf. and Exhibition, 375–387. Cambridge, UK: Woodhead Publishing.
Salah, M. H., P. M. Frick, J. R. Wagner, and D. M. Dawson. 2009. “Hydraulic actuated automotive cooling systems-Nonlinear control and test.” Control Eng. Pract. 17 (5): 609–621. https://doi.org/10.1016/j.conengprac.2008.10.016.
Salah, M. H., T. H. Mitchell, J. R. Wagner, and D. M. Dawson. 2008. “Nonlinear-control strategy for advanced vehicle thermal-management systems.” IEEE Trans. Veh. Technol. 57 (1): 127–137. https://doi.org/10.1109/TVT.2007.901892.
Sandhya, D., C. S. R. Mekala, and V. R. Veeredhi. 2016. “Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids.” Int. Commun. Heat Mass Transfer 78 (Nov): 121–126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002.
Sanna, A., C. Hutter, D. B. R. Kenning, T. G. Karayiannis, K. Sefiane, and R. A. Nelson. 2014. “Numerical investigation of nucleate boiling heat transfer on thin substrates.” Int. J. Heat Mass Transfer 76 (6): 45–64. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.026.
Serrano, J. R. 2017. “Imagining the future of the internal combustion engine for ground transport in the current context.” Appl. Sci. 7 (10): 1001. https://doi.org/10.3390/app7101001.
Setlur, P., J. R. Wagner, D. M. Dawson, and E. Marotta. 2005. “An advanced engine thermal management system: Nonlinear control and test.” IEEE ASME Trans. Mechatronics 10 (2): 210–220. https://doi.org/10.1109/TMECH.2005.844707.
Shi, H., Y. Lu, R. Huang, X. Yu, G. Lu, Z. Liu, X. Chen, G. Qian, and A. P. Roskilly. 2017. “Experiment study of multi-fans cooling module using different shroud structures for advanced vehicle thermal management system.” Energy Procedia 142 (Dec): 3968–3974. https://doi.org/10.1016/j.egypro.2017.12.305.
Shu, G., L. Shi, H. Tian, X. Li, G. Huang, and L. Chang. 2016. “An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery.” Appl. Energy 176 (Aug): 171–182. https://doi.org/10.1016/j.apenergy.2016.05.053.
Tao, X., and J. R. Wagner. 2016. An engine thermal management system design for military ground vehicle—Simultaneous fan, pump and valve control. Warrendale, PA: SAE International.
Torregrosa, A. J., A. Broatch, P. Olmeda, and C. Romero. 2008. “Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption.” Int. J. Automot. Technol. 9 (4): 447–458. https://doi.org/10.1007/s12239-008-0054-1.
Tumas, T. M., B. Maniam, M. Mahajan, G. Anand, and N. Jain. 2004. e-thermal: A vehicle-level HVAC/PTC simulation tool. Warrendale, PA: SAE International.
Twiddle, J. A., and N. B. Jones. 2002. “Fuzzy model-based condition monitoring and fault diagnosis of a diesel engine cooling system.” Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 216 (I3): 215–224.
Vittorini, D., D. Di Battista, and R. Cipollone. 2018. “Engine oil warm-up through heat recovery on exhaust gases—Emissions reduction assessment during homologation cycles.” Therm. Sci. Eng. Prog. 5 (Mar): 412–421. https://doi.org/10.1016/j.tsep.2018.01.010.
Wagner, J. R., M. C. Ghone, D. W. Dawson, and E. E. Marotta. 2002. Coolant flow control strategies for automotive thermal management systems. Warrendale, PA: SAE International.
Wagner, J. R., V. Srinivasan, D. M. Dawson, and E. E. Marotta. 2003. Smart thermostat and coolant pump control for engine thermal management systems. Warrendale, PA: SAE International.
Wambsganss, M. W. 1999. Thermal management concepts for higher-efficiency heavy vehicles. Warrendale, PA: SAE International.
Wang, T., and J. Wagner. 2015. “Advanced automotive thermal management—Nonlinear radiator fan matrix control.” Control Eng. Pract. 41: 113–123. https://doi.org/10.1016/j.conengprac.2015.04.004.
Wang, X., X. Liang, Z. Hao, and R. Chen. 2015. “Comparison of electrical and mechanical water pump performance in internal combustion engine.” Int. J. Heavy Veh. Syst. 10 (3): 205–223.
Will, F., and A. Boretti. 2011. A new method to warm up lubricating oil to improve the fuel efficiency during cold start. Warrendale, PA: SAE International.
Xie, H., and N. Kang. 2015. “Influence of power distribution of fan and pump on the total power consumption of thermal management system in heavy-diesel engine.” [In Chinese.] J. Tianjin Univ. 48 (3): 225–233.
Yao, B., F. Yang, H. Zhang, E. Wang, and K. Yang. 2014. “Analyzing the performance of a dual loop organic Rankine cycle system for waste heat recovery of a heavy-duty compressed natural gas engine.” Energies 7 (11): 7794–7815. https://doi.org/10.3390/en7117794.
Yoo, I. K., K. Simpson, M. Bell, and S. Majkowski. 2000. An engine coolant temperature model and application for cooling system diagnosis. Warrendale, PA: SAE International.
Zavaragh, H. G., A. Kaleli, F. Afshari, and A. Amini. 2017. “Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system.” Appl. Therm. Eng. 123 (Apr): 390–402. https://doi.org/10.1016/j.applthermaleng.2017.04.164.
Zheng, Q., Z. Chen, and Z. Gao. 2009. “A practical approach to disturbance decoupling control.” Control Eng. Pract. 17 (9): 1016–1025. https://doi.org/10.1016/j.conengprac.2009.03.005.
Zhou, B., X. D. Lan, X. H. Xu, and X. G. Liang. 2015. “Numerical model and control strategies for the advanced thermal management system of diesel engine.” Appl. Therm. Eng. 82: 368–379. https://doi.org/10.1016/j.applthermaleng.2015.03.005.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 147Issue 2April 2021

History

Published online: Feb 9, 2021
Published in print: Apr 1, 2021
Discussion open until: Jul 9, 2021

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, State Key Laboratory of Engines, Tianjin Univ., Tianjin 300072, China. ORCID: https://orcid.org/0000-0003-0861-4966. Email: [email protected]
Mingsheng Wen [email protected]
Graduate Student, State Key Laboratory of Engines, Tianjin Univ., Tianjin 300072, China. Email: [email protected]
Hongbin Yang [email protected]
Graduate Student, State Key Laboratory of Engines, Tianjin Univ., Tianjin 300072, China. Email: [email protected]
Associate Professor, State Key Laboratory of Engines, Tianjin Univ., Tianjin 300072, China (corresponding author). Email: [email protected]
Professor, State Key Laboratory of Engines, Tianjin Univ., Tianjin 300072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share