Technical Papers
Jul 29, 2020

Numerical Modeling of a Darrieus Horizontal Axis Shallow-Water Turbine

Publication: Journal of Energy Engineering
Volume 146, Issue 5

Abstract

For decades, Darrieus turbines have shown their advantage over other turbines for providing hydropower. Most studies tend to be conducted with the turbine in its vertical axis configuration, while few have examined the horizontal axis configuration. In this paper, we undertake a computational fluid dynamics (CFD) analysis that investigates blade profile alternatives to improve the efficiency of a horizontal axis Darrieus turbine under more natural flow conditions. An inlet boundary layer profile and a confined domain are imposed to represent river conditions. Four blade profiles are tested under various tip-speed ratios using a three-bladed turbine. The developed model is based on an unsteady k-ω shear stress transport (SST) turbulence closure associated with a very-fine-grid mesh. The model methods are first validated against open-channel experimental results published in the literature and show less than 13% discrepancy. The S1046 blade profile is shown to improve the power coefficient Cp by 14% compared to the NACA0018 blade profile. The S809 blade profile exhibits the lowest performance in the dynamic stall and transition regions. For high tip-speed ratios, the FXLV152 profile produces the highest local efficiency power coefficient. The influence of the blade number is also quantified. The four- and two-bladed S1046 configurations achieve the highest power coefficients in the low and high tip-speed ratio regions, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions (CFX case and results files, mesh files) associated with a commercialized product.

Acknowledgments

All calculations were done using the computational resources of the Compute Canada network, which is here gratefully acknowledged. The authors would also like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support (Grant No. 514264-17 with the company IdÉnergie).

References

Amet, E., T. Maitre, C. Pellone, and J. L. Achard. 2009. “2D numerical simulations of blade-vortex interaction in a Darrieus turbine.” J. Fluids Eng. Trans. ASME 131 (11): 1–15. https://doi.org/10.1115/1.4000258.
Arab, A., M. Javadi, M. Anbarsooz, and M. Moghiman. 2017. “A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia.” Renewable Energy 107 (Jul): 298–311. https://doi.org/10.1016/j.renene.2017.02.013.
Araya, D. B., T. Colonius, and J. O. Dabiri. 2017. “Transition to bluff-body dynamics in the wake of vertical-axis wind turbines.” J. Fluid Mech. 813 (Feb): 346–381. https://doi.org/10.1017/jfm.2016.862.
Arpino, F., M. Scungio, and G. Cortellessa. 2018. “Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades.” Energy Convers. Manage. 171 (Sep): 769–777. https://doi.org/10.1016/j.enconman.2018.06.028.
Asr, M. T., E. Z. Nezhad, F. Mustapha, and S. Wiriadidjaja. 2016. “Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils.” Energy 112 (Oct): 528–537. https://doi.org/10.1016/j.energy.2016.06.059.
Bausas, M. D., and L. A. M. Danao. 2015. “The aerodynamics of a camber-bladed vertical axis wind turbine in unsteady wind.” Energy 93 (Dec): 1155–1164. https://doi.org/10.1016/j.energy.2015.09.120.
Benchikh Le Hocine, A. E., R. W. J. Lacey, and S. Poncet. 2019a. “Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine.” Renewable Energy 143 (Dec): 1890–1901. https://doi.org/10.1016/j.renene.2019.06.010.
Benchikh Le Hocine, A. E., R. W. J. Lacey, and S. Poncet. 2019b. “Turbulent flow over a D-section bluff body: A numerical benchmark.” Environ. Fluid Mech. 19 (2): 435–456. https://doi.org/10.1007/s10652-018-9634-4.
Bhargav, M. M. S., R. S. Ratna, V. Kishore, and V. Laxman. 2016. “Influence of fluctuating wind conditions on vertical axis wind turbine using a three dimensional CFD model.” J. Wind Eng. Ind. Aerodyn. 158 (Nov): 98–108. https://doi.org/10.1016/j.jweia.2016.10.001.
Bianchini, A., F. Balduzzi, P. Bachant, G. Ferrara, and L. Ferrari. 2017. “Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: A combined numerical and experimental assessment.” Energy Convers. Manage. 136 (Mar): 318–328. https://doi.org/10.1016/j.enconman.2017.01.026.
Bossard, J. 2012. “Experimental characteristics of dynamic stall in HARVEST turbines with particles image velocimetry method (PIV): Comparing with modeling results.” Ph.D. thesis, Laboratoire des Ecoulements Géophysiques et Industriels (LEGI), Université de Grenoble.
Bourget, S., O. Gauvin-Tremblay, and G. Dumas. 2018. “Hydrokinetic turbine array modeling for performance analysis and deployment optimization.” Trans. Can. Soc. Mech. Eng. 42 (4): 370–381. https://doi.org/10.1139/tcsme-2017-0088.
Bradshaw, P. 1970. Experimental fluid mechanics. 2nd ed. Oxford, UK: Pergamon Press.
Castelli, R. M., A. Englaro, and E. Benini. 2011. “The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD.” Energy 36 (8): 4919–4934. https://doi.org/10.1016/j.energy.2011.05.036.
Chowdhury, A. M., H. Akimoto, and Y. Hara. 2016. “Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration.” Renewable Energy 85 (Jan): 327–337. https://doi.org/10.1016/j.renene.2015.06.037.
Daróczy, L., G. Janiga, K. Petrasch, M. Webner, and D. Thévenin. 2015. “Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors.” Energy 90 (Oct): 680–690. https://doi.org/10.1016/j.energy.2015.07.102.
Elsakka, M. M., D. B. Ingham, L. Ma, and M. Pourkashanian. 2019. “CFD analysis of the angle of attack for a vertical axis wind turbine blade.” Energy Convers. Manage. 182 (Feb): 154–165. https://doi.org/10.1016/j.enconman.2018.12.054.
Ferreira, C. J. S., H. Bijl, and G. van Bussel. 2007. “Simulating dynamic stall in a 2D VAWT: Modeling strategy, verification and validation with particle image velocimetry data.” J. Phys. Conf. Ser. 75 (Jul): 12–23.
Fujisawa, N., and S. Shibuya. 2001. “Observations of dynamic stall on turbine blades.” J. Wind Eng. Ind. Aerodyn. 89 (2): 201–214. https://doi.org/10.1016/S0167-6105(00)00062-3.
Gagnon, J. M., G. D. Ciocan, C. Deschenes, and M. Iliescu. 2008. “Numerical and experimental investigation of rotor-stator interactions in an axial turbine: Numerical interface assessment.” In Proc., ASME Fluids Engineering Division Summer Meeting 2008, 929–935. New York: ASME.
Ghasemian, M., A. Z. Najafian, and A. Sedaghat. 2017. “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines.” Energy Convers. Manage. 149 (Oct): 87–100. https://doi.org/10.1016/j.enconman.2017.07.016.
Gorle, J. M. R., L. Chatellier, F. Pons, and M. Ba. 2016. “Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: A computational and experimental study.” J. Fluids Struct. 66 (Oct): 382–402. https://doi.org/10.1016/j.jfluidstructs.2016.08.003.
Gosselin, R., G. Dumas, and M. Boudreau. 2016. “Parametric study of H-Darrieus vertical-axis turbines using CFD simulations.” J. Renewable Sustainable Energy 8 (5): 053301. https://doi.org/10.1063/1.4963240.
Gupta, R., A. Biswas, and K. K. Sharma. 2008. “Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor.” Renewable Energy 33 (9): 1974–1981. https://doi.org/10.1016/j.renene.2007.12.008.
Hashem, I., and M. H. Mohamed. 2018. “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine.” Energy 142 (Jan): 531–545. https://doi.org/10.1016/j.energy.2017.10.036.
Howell, R., N. Qin, J. Edwards, and N. Durrani. 2010. “Wind tunnel and numerical study of a small vertical axis wind turbine.” Renewable Energy 35 (2): 412–422. https://doi.org/10.1016/j.renene.2009.07.025.
Jafari, M., A. Razavi, and M. Mirhosseini. 2018. “Effect of steady and quasi-unsteady wind on aerodynamic performance of H-rotor vertical axis wind turbines.” J. Energy Eng. 144 (6): 04018065. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000578.
Kádár, P. 2014. “Pros and cons of the renewable energy application.” Acta Polytechnica Hungarica 11 (4): 211–224.
Laneville, A., and P. Vittecoq. 1986. “Dynamic stall: The case of the vertical axis wind turbine.” J. Solar Energy Eng. Trans. 108 (2): 140–145. https://doi.org/10.1115/1.3268081.
Lee, Y. T., and C. Lim. 2015. “Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine.” Renewable Energy 83 (Nov): 407–415. https://doi.org/10.1016/j.renene.2015.04.043.
Li, C., S. Zhu, Y.-L. Xu, and Y. Xiao. 2013. “2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow.” Renewable Energy 51 (Mar): 317–330. https://doi.org/10.1016/j.renene.2012.09.011.
Li, Q., T. Maeda, Y. Kamada, J. Murata, T. Kawabata, K. Shimizu, T. Ogasawara, A. Nakai, and T. Kasuya. 2016. “Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance).” Energy 106 (Jul): 443–452. https://doi.org/10.1016/j.energy.2016.03.089.
Ma, N., H. Lei, Z. Han, D. Zhou, Y. Bao, K. Zhang, L. Zhou, and C. Chen. 2018. “Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio.” Energy 150 (May): 236–252. https://doi.org/10.1016/j.energy.2018.02.115.
Maitre, T., E. Amet, and C. Pellone. 2013. “Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments.” Renewable Energy 51 (Mar): 497–512. https://doi.org/10.1016/j.renene.2012.09.030.
McAdam, R. A., G. T. Houlsby, and M. L. G. Oldfield. 2013a. “Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 1.” Renewable Energy 59 (Nov): 105–114. https://doi.org/10.1016/j.renene.2013.03.016.
McAdam, R. A., G. T. Houlsby, and M. L. G. Oldfield. 2013b. “Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2.” Renewable Energy 59 (Nov): 141–149. https://doi.org/10.1016/j.renene.2013.03.015.
McAdam, R. A., G. T. Houlsby, and M. L. G. Oldfield. 2013c. “Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 3.” Renewable Energy 59 (Nov): 82–91. https://doi.org/10.1016/j.renene.2013.03.012.
McAdam, R. A., G. T. Houlsby, M. L. G. Oldfield, and M. D. McCulloch. 2010. “Experimental testing of the transverse horizontal axis water turbine.” IET Renewable Power Gen. 4 (6): 510–518. https://doi.org/10.1049/iet-rpg.2009.0194.
McLaren, K., S. Tullis, and S. Ziada. 2012. “Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine.” Wind Energy 15 (3): 349–361. https://doi.org/10.1002/we.472.
Meakhail, T., and S. O. Park. 2005. “A study of impeller-diffuser-volute interaction in a centrifugal fan.” J. Turbomach. 127 (1): 84–90. https://doi.org/10.1115/1.1812318.
Menter, F. R. 1994. “Two-equation eddy-viscosity turbulence models for engineering applications.” AIAA J. 32 (8): 1598–1605. https://doi.org/10.2514/3.12149.
Mertens, S., G. van Kuik, and G. van Bussel. 2003. “Performance of an H-Darrieus in the skewed flow on a roof.” J. Solar Energy Eng. Trans. 125 (4): 433–440. https://doi.org/10.1115/1.1629309.
Mohamed, M. H. 2012. “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes.” Energy 47 (1): 522–530. https://doi.org/10.1016/j.energy.2012.08.044.
Muratoglu, A., and M. I. Yuce. 2017. “Design of a river hydrokinetic turbine using optimization and CFD simulations.” J. Energy Eng. 143 (4): 04017009. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000438.
Paraschivoiu, I., S. Shams, and N. V. Dy. 2018. “Performance assessment of Darrieus wind turbines with symmetric and cambered airfoils.” Trans. Can. Soc. Mech. Eng. 42 (4): 382–392. https://doi.org/10.1139/tcsme-2017-0105.
Ponta, F. L., and P. M. Jacovkis. 2001. “A vortex model for Darrieus turbine using finite element techniques.” Renewable Energy 24 (1): 1–18. https://doi.org/10.1016/S0960-1481(00)00190-7.
Rainbird, J. M., A. Bianchini, F. Balduzzi, J. Peiro, J. M. R. Graham, G. Ferrara, and L. Ferrari. 2015. “On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines.” Energy Convers. Manage. 106 (Dec): 373–384. https://doi.org/10.1016/j.enconman.2015.09.053.
Rhie, C. M., and W. L. Chow. 1982. “Numerical study of the turbulent flow past an isolated airfoil with trailing edge separation.” AIAA J. 21 (11): 1525–1532. https://doi.org/10.2514/3.8284.
Rogowski, K. 2019. “CFD computation of the H-Darrieus wind turbine—The impact of the rotating shaft on the rotor performance.” Energies 12 (13): 2506. https://doi.org/10.3390/en12132506.
Roper, L. D. 2011. “World fossil-fuels depletion.” Accessed July 10, 2020. http://www.roperld.com/science/minerals/FossilFuelsDepletion.htm.
Rossetti, A., and G. Pavesi. 2013. “Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up.” Renewable Energy 50 (Feb): 7–19. https://doi.org/10.1016/j.renene.2012.06.025.
Sabaeifard, P., H. Razzaghi, and A. Forouzandeh. 2012. “Determination of vertical axis wind turbines optimal configuration through CFD simulations.” Int. Conf. Future Environ. Energy 28 (Feb): 109–113.
Sajid, A., M. L. Sang, and M. J. Choon. 2018. “Effects of instantaneous tangential velocity on the aerodynamic performance of an H-Darrieus wind turbine.” Energy Convers. Manage. 171 (Sep): 1322–1338. https://doi.org/10.1016/j.enconman.2018.06.075.
Salter, S. H. 2012. “Are nearly all tidal stream turbine designs wrong?” In Proc., 4th Int. Conf. On Ocean Energy, Lisbon, Portugal: The Ocean Energy Systems Implementing Agreement (OES).
Sengupta, A. R., A. Biswas, and R. Gupta. 2016. “Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams.” Renewable Energy 93 (Aug): 536–547. https://doi.org/10.1016/j.renene.2016.03.029.
Sukanta, R., and K. S. Ujjwal. 2013. “Review on the numerical investigations into the design and development of Savonius wind rotors.” Renewable Sustainable Energy Rev. 24 (Aug): 73–83. https://doi.org/10.1016/j.rser.2013.03.060.
Untaroiu, A., H. G. Wood, P. E. Allaire, and R. J. Ribando. 2011. “Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach.” J. Solar Energy Eng. Trans. ASME 133 (4): 0410101. https://doi.org/10.1115/1.4004705.
VanZwieten, J., W. McAnally, J. Ahmad, T. Davis, J. Martin, M. Bevelhimer, A. Cribbs, R. Lippert, T. Hudon, and M. Trudeau. 2015. “In-stream hydrokinetic power: Review and appraisal.” J. Energy Eng. 141 (3): 04014024. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000197.
Velasco, D., O. L. Mejia, and S. Lain. 2017. “Numerical simulations of active flow control with synthetic jets in a Darrieus turbine.” Renewable Energy 113 (Dec): 129–140. https://doi.org/10.1016/j.renene.2017.05.075.
Wang, Y., X. Sun, X. Dong, B. Zhu, D. Huang, and Z. Zheng. 2016. “Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades.” Energy Convers. Manage. 108 (Jan): 275–286. https://doi.org/10.1016/j.enconman.2015.11.003.
Wekesa, D. W., C. Wang, Y. Wei, and L. A. M. Danao. 2017. “Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream.” Energy 121 (Feb): 854–864. https://doi.org/10.1016/j.energy.2017.01.041.
World Energy Council. 2016. Survey of energy resources. London: World Energy Council.
Wu, Y.-T., C.-Y. Lin, C.-E. Huang, and S.-D. Lyu. 2019. “Investigation of multiblade wind-turbine wakes in turbulent boundary layer.” J. Energy Eng. 145 (6): 04019023. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000625.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 146Issue 5October 2020

History

Received: Sep 6, 2019
Accepted: Jun 9, 2020
Published online: Jul 29, 2020
Published in print: Oct 1, 2020
Discussion open until: Dec 29, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Alla Eddine Benchikh Le Hocine, Ph.D. [email protected]
Dept. of Mechanical Engineering, Université de Sherbrooke, 2500 Blvd. de l’Université, Sherbrooke, QC, Canada J1K 2R1 (corresponding author). Email: [email protected]
Sébastien Poncet
Professor, Dept. of Mechanical Engineering, Université de Sherbrooke, 2500 Blvd. de l’Université, Sherbrooke, QC, Canada J1K 2R1.
Jay Lacey
Professor, Dept. of Civil Engineering, Université de Sherbrooke, 2500 Blvd. de l’Université, Sherbrooke, QC, Canada J1K 2R1.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share