Technical Papers
Sep 28, 2022

Nonlinear Elastoplastic Analysis of Plates Coupled with Mechanical Element–Based Isolation System

Publication: Journal of Engineering Mechanics
Volume 148, Issue 12

Abstract

In general, the response of a system coupled with a vibration absorber is obtained by incorporating only elastic analysis under different loading conditions. However, the elastoplastic analysis is carried out for blast-resistant structures such as monolithic and composite sandwich panels. The present study delineates the nonlinear elastoplastic analysis of two steel plates sandwiched with mechanical elements (spring-dashpot-inerter)–based dynamic vibration absorber (DVA) subjected to a uniformly distributed blast load on one of its surfaces. The assembly of two steel plates interconnected with spring–dashpot elements is modeled as an equivalent two-degree-of-freedom (2DOF) system incorporating nonlinear elastoplastic material properties. The equivalent mass, resistance, and load are computed using transformation factors. The displacement response of the equivalent 2DOF system is compared with a finite element (FE)–based numerical model of the assembly. The influence of inserting an inerter between two plates is investigated by considering three configurations of dynamic vibration absorber and varying certain parameters such as stiffness, damping coefficient, and inertance. It was observed that in terms of deformation and force transmitted to the back plate, the configuration of the inerter in series with a dashpot element performed better than the simple spring–dashpot arrangement. The internal resistance of the front plate governs the performance of different configurations of DVA, which was demonstrated by changing the thicknesses of the plates. The influence of nonlinearity on the dynamics of the system was investigated.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some of the data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The FE-based model is available. All the data and equations used in the code for modeling are mentioned in the paper itself.

References

Abaqus. 2018. ABAQUS/explicit user’s manual. Providence, RI: Dassault Systèmes Simulia Corporation.
AlAberdi, R., J. Przywara, and K. Khandelwal. 2013. “Performance evaluation of sandwich panel systems for blast mitigation.” Eng. Struct. 56 (Nov): 2119–2130. https://doi.org/10.1016/j.engstruct.2013.08.021.
Basili, M., M. de Angelis, and D. Pietrosanti. 2018. “Modal analysis and dynamic response of a two adjacent single degree of freedom systems linked by spring-dashpot-inerter elements.” Eng. Struct. 174 (Jun): 736–752. https://doi.org/10.1016/j.engstruct.2018.07.048.
Biggs, J. M. 1964. Introduction to structural dynamics. New York: McGraw-Hill.
Cella, G., V. Sannibale, R. Desalvo, S. Márka, and A. Takamori. 2005. “Monolithic geometric anti-spring blades.” Nucl. Instrum. Methods Phys. Res., Sect. A 540 (2–3): 502–519. https://doi.org/10.1016/j.nima.2004.10.042.
Chen, M. Z. Q., Y. Hu, L. Huang, and G. Chen. 2014. “Influence of inerter on natural frequencies of vibration systems.” J. Sound Vib. 333 (7): 1874–1887. https://doi.org/10.1016/j.jsv.2013.11.025.
Chen, W., and H. Hao. 2013. “Numerical study of blast-resistant sandwich panels with rotational friction dampers.” Int. J. Struct. Stab. Dyn. 13 (6): 1350014. https://doi.org/10.1142/S0219455413500144.
Cheng, M., K. C. Hung, and O. Y. Chong. 2005. “Numerical study of water mitigation effects on blast wave.” Shock Waves 14 (3): 217–223. https://doi.org/10.1007/s00193-005-0267-4.
Cronjé, J. M., P. S. Heyns, N. J. Theron, and P. W. Loveday. 2016. “Development of a variable stiffness and damping tunable vibration isolator.” J. Vib. Control 11 (3): 381–396. https://doi.org/10.1177/1077546305048585.
Cui, X., L. Zhao, Z. Wang, H. Zhao, and D. Fang. 2012. “Dynamic response of metallic lattice sandwich structures to impulsive loading.” Int. J. Impact Eng. 43 (May): 1–5. https://doi.org/10.1016/j.ijimpeng.2011.11.004.
de Domenico, D., and G. Ricciardi. 2018. “Earthquake protection of existing structures with limited seismic joint: Base isolation with supplemental damping versus rotational inertia.” In Advances in civil engineering, 6019495. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1155/2018/6019495.
du Plooy, N. F., P. S. Heyns, and M. J. Brennan. 2005. “The development of a tunable vibration absorbing isolator.” Int. J. Mech. Sci. 47 (7): 983–997. https://doi.org/10.1016/j.ijmecsci.2005.04.009.
El-Dakhakhni, W. W., W. F. Mekky, and S. H. C. Rezaei. 2010. “Validity of SDOF models for analyzing two-way reinforced concrete panels under blast loading.” J. Perform. Constr. Facil. 24 (4): 311–325. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000090.
Fallah, A. S., and L. A. Louca. 2007. “Pressure–impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading.” Int. J. Impact Eng. 34 (4): 823–842. https://doi.org/10.1016/j.ijimpeng.2006.01.007.
Faraj, R., J. Holnicki-Szulc, L. Knap, and J. Seńko. 2016. “Adaptive inertial shock-absorber.” Smart Mater. Struct. 25 (3): 035031. https://doi.org/10.1088/0964-1726/25/3/035031.
Faraj, R., Ł. Jankowski, C. Graczykowski, and J. Holnicki-Szulc. 2019. “Can the inerter be a successful shock-absorber? The case of a ball-screw inerter with a variable thread lead.” J. Franklin Inst. 356 (14): 7855–7872. https://doi.org/10.1016/j.jfranklin.2019.04.012.
Feldgun, V. R., D. Z. Yankelevsky, and Y. S. Karinski. 2016. “A nonlinear SDOF model for blast response simulation of elastic thin rectangular plates.” Int. J. Impact Eng. 88 (Feb): 172–188. https://doi.org/10.1016/j.ijimpeng.2015.09.001.
Fischer, K., and I. Häring. 2009. “SDOF response model parameters from dynamic blast loading experiments.” Eng. Struct. 31 (8): 1677–1686. https://doi.org/10.1016/j.engstruct.2009.02.040.
Fleck, N. A., and V. S. Deshpande. 2004. “The resistance of clamped sandwich beams to shock loading.” J. Appl. Mech. 71 (3): 386–401. https://doi.org/10.1115/1.1629109.
Gantes, C. J., and N. G. Pnevmatikos. 2004. “Elastic–plastic response spectra for exponential blast loading.” Int. J. Impact Eng. 30 (3): 323–343. https://doi.org/10.1016/S0734-743X(03)00077-0.
Gaur, L., T. Chakraborty, A. K. Darpe, and V. Matsagar. 2019. “Response of box-type structure and effect of structural parameters on reflected pressure under blast load.” Int. J. Prot. Struct. 10 (3): 359–379. https://doi.org/10.1177/2041419619854769.
Goel, M. D., V. A. Matsagar, and A. K. Gupta. 2015. “Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam.” Int. J. Impact Eng. 77 (Mar): 134–146. https://doi.org/10.1016/j.ijimpeng.2014.11.017.
Gonzalez-Buelga, A., L. R. Clare, S. A. Neild, S. G. Burrow, and D. J. Inman. 2015. “An electromagnetic vibration absorber with harvesting and tuning capabilities.” Struct. Control Health Monit. 22 (11): 1359–1372. https://doi.org/10.1002/stc.1748.
Hoo Fatt, M. S., and L. Palla. 2009. “Analytical modeling of composite sandwich panels under blast loads.” J. Sandwich Struct. Mater. 11 (4): 357–380. https://doi.org/10.1177/1099636209104515.
Hu, Y., J. Wang, M. Z. Q. Chen, Z. Li, and Y. Sun. 2018. “Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control.” Eng. Struct. 177 (Dec): 198–209. https://doi.org/10.1016/j.engstruct.2018.09.063.
Huang, X., X. Liu, J. Sun, Z. Zhang, and H. Hua. 2014. “Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study.” J. Sound Vib. 333 (4): 1132–1148. https://doi.org/10.1016/j.jsv.2013.10.026.
Hwang, J. S., J. Kim, and Y. M. Kim. 2007. “Rotational inertia dampers with toggle bracing for vibration control of a building structure.” Eng. Struct. 29 (6): 1201–1208. https://doi.org/10.1016/j.engstruct.2006.08.005.
Ibrahim, R. A. 2008. “Recent advances in nonlinear passive vibration isolators.” J. Sound Vib. 314 (3–5): 371–452. https://doi.org/10.1016/j.jsv.2008.01.014.
Ivovich, V. A., and M. K. Savovich. 2001. “Isolation of floor machines by lever-type inertial vibration corrector.” Proc. Inst. Civ. Eng. Struct. Build. 146 (4): 391–402. https://doi.org/10.1680/stbu.2001.146.4.391.
John, E. D. A., and D. J. Wagg. 2019. “Design and testing of a frictionless mechanical inerter device using living-hinges.” J. Franklin Inst. 356 (14): 7650–7668. https://doi.org/10.1016/j.jfranklin.2019.01.036.
Krauthammer, T., S. Shahriar, and H. M. Shanaa. 1990. “Response of reinforced concrete elements to severe impulsive loads.” J. Struct. Eng. 116 (4): 1061–1079. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(1061).
Kuhnert, W. M., P. J. P. Gonçalves, D. F. Ledezma-Ramirez, and M. J. Brennan. 2021. “Inerter-like devices used for vibration isolation: A historical perspective.” J. Franklin Inst. 358 (1): 1070–1086. https://doi.org/10.1016/j.jfranklin.2020.11.007.
Kuhnert, W. M., F. Santade, P. José, P. Gonçalves, and D. F. Ledezma Ramírez. 2015. “Vibration displacement transmissibility and shock displacement ratio in systems with inerter.” In Proc., 23rd ABCM Int. Congress of Mechanical Engineering. Rio de Janeiro, Brazil: Associacao Brasileira de Engenharia e Ciencias Mecanicas.
Lazar, I. F., S. A. Neild, and D. J. Wagg. 2014. “Using an inerter-based device for structural vibration suppression.” Earthquake Eng. Struct. Dyn. 43 (8): 1129–1147. https://doi.org/10.1002/eqe.2390.
Li, Q. M., and H. Meng. 2002. “Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model.” J. Eng. Mech. 128 (1): 87–92. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(87).
Li, X., L. Huo, and H. Li. 2012. “Beat phenomenon analysis of concrete beam with piezoelectric sensors.” Int. J. Distrib. Sens. Netw. 8 (9): 296124. https://doi.org/10.1155/2012/296124.
Li, Y., J. Z. Jiang, and S. Neild. 2016. “Inerter-based configurations for main-landing-gear shimmy suppression.” J. Aircr. 54 (2): 684–693. https://doi.org/10.2514/1.C033964.
Luo, J., J. Z. Jiang, and J. H. G. Macdonald. 2019. “Cable vibration suppression with inerter-based absorbers.” J. Eng. Mech. 145 (2): 04018134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554.
Ma, R., K. Bi, and H. Hao. 2021. “Inerter-based structural vibration control: A state-of-the-art review.” Eng. Struct. 243 (Sep): 112655. https://doi.org/10.1016/j.engstruct.2021.112655.
Marian, L., and A. Giaralis. 2014. “Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems.” Probab. Eng. Mech. 38 (Oct): 156–164. https://doi.org/10.1016/j.probengmech.2014.03.007.
Matsagar, V. A. 2016. “Comparative performance of composite sandwich panels and non-composite panels under blast loading.” Mater. Struct. 49 (1–2): 611–629. https://doi.org/10.1617/s11527-015-0523-8.
Miah, M. S., E. N. Chatzi, V. K. Dertimanis, and F. Weber. 2016. “Real-time experimental validation of a novel semi-active control scheme for vibration mitigation.” Struct. Control Health Monit. 24 (3): e1878. https://doi.org/10.1002/stc.1878.
Morison, C. M. 2006. “Dynamic response of walls and slabs by single-degree-of-freedom analysis—A critical review and revision.” Int. J. Impact Eng. 32 (8): 1214–1247. https://doi.org/10.1016/j.ijimpeng.2004.11.008.
Narkhede, D. I., and R. Sinha. 2014. “Behavior of nonlinear fluid viscous dampers for control of shock vibrations.” J. Sound Vib. 333 (1): 80–98. https://doi.org/10.1016/j.jsv.2013.08.041.
Palacios-Quiñonero, F., J. Rubió-Massegú, J. M. Rossell, and H. R. Karimi. 2012. “Semiactive-passive structural vibration control strategy for adjacent structures under seismic excitation.” J. Franklin Inst. 349 (10): 3003–3026. https://doi.org/10.1016/j.jfranklin.2012.09.005.
Pietrosanti, D., M. de Angelis, and A. Giaralis. 2020. “Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation.” Int. J. Mech. Sci. 184 (Oct): 105762. https://doi.org/10.1016/j.ijmecsci.2020.105762.
Pradono, M. H., H. Iemura, A. Igarashi, and A. Kalantari. 2008. “Application of angular-mass dampers to base-isolated benchmark building.” Struct. Control Health Monit. 15 (5): 737–745. https://doi.org/10.1002/stc.270.
Shah, S. K. A., A. S. Fallah, and L. A. Louca. 2012. “On the chaotic dynamic response of deterministic nonlinear single and multi-degree-of systems.” J. Mech. Sci. Technol. 26 (6): 1697–1709. https://doi.org/10.1007/s12206-012-0418-3.
Shen, Y., L. Chen, Y. Liu, and X. Zhang. 2016. “Modeling and optimization of vehicle suspension employing a nonlinear fluid inerter.” Shock and vibration. 2016: 2623017. https://doi.org/10.1155/2016/2623017.
Smith, M. C. 2002. “Synthesis of mechanical networks: The inerter.” IEEE Trans. Autom. Control 47 (10): 1648–1662. https://doi.org/10.1109/TAC.2002.803532.
Smith, M. C., and F.-C. Wang. 2004. “Performance benefits in passive vehicle suspensions employing inerters.” Veh. Syst. Dyn. 42 (4): 235–257. https://doi.org/10.1080/00423110412331289871.
Su, Z., W. Peng, Z. Zhang, G. Gogos, R. Skaggs, and B. Cheeseman. 2008. “Numerical simulation of a novel blast wave mitigation device.” Int. J. Impact Eng. 35 (5): 336–346. https://doi.org/10.1016/j.ijimpeng.2007.04.001.
Taflanidis, A. A., A. Giaralis, and D. Patsialis. 2019. “Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures.” J. Franklin Inst. 356 (14): 7754–7784. https://doi.org/10.1016/j.jfranklin.2019.02.022.
Takewaki, I., S. Murakami, S. Yoshitomi, and M. Tsuji. 2011. “Fundamental mechanism of earthquake response reduction in building structures with inertial dampers.” Struct. Control Health Monit. 19 (6): 590–608. https://doi.org/10.1002/stc.457.
Tang, B., and M. J. Brennan. 2014. “On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness.” Int. J. Mech. Sci. 81 (Apr): 207–214. https://doi.org/10.1016/j.ijmecsci.2014.02.019.
Tapia-González, P. E., and D. F. Ledezma-Ramírez. 2017. “Experimental characterisation of dry friction isolators for shock and vibration.” J. Low Freq. Noise Vibr. Active Control 36 (1): 83–95. https://doi.org/10.1177/0263092317693509.
Tsiavos, A., T. Markic, D. Schlatter, and B. Stojadinovic. 2021. “Shaking table investigation of inelastic deformation demand for a structure isolated using friction-pendulum sliding bearings.” In Vol. 31 of Structures, 1041–1052. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.istruc.2021.02.040.
UFC (Unified Facilities Criteria). 2008. Design of structures to resist the effects of accidental explosions. UFC-3-340-02. Washington, DC: US Department of Defense.
USACE. 1957. Design of structures to resist the effects of atomic weapons–principals of structural elements subjected to dynamic loads. EM 1110-345-416. Washington, DC: USACE.
US Department of the Army. 1990. Structures to resist the effects of accidental explosions. Technical manual TM5-1300. Washington, DC: US Department of the Army.
Wahed, A. K., J. L. Sproston, and G. K. Schleyer. 2002. “Electrorheological and magnetorheological fluids in blast resistant design applications.” Mater. Des. 23 (4): 391–404. https://doi.org/10.1016/S0261-3069(02)00003-1.
Wang, F. C., M. F. Hong, and C. W. Chen. 2010a. “Building suspensions with inerters.” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 224 (8): 1605–1616. https://doi.org/10.1243/09544062JMES1909.
Wang, F. C., C. H. Lee, and R. Q. Zheng. 2019. “Benefits of the inerter in vibration suppression of a milling machine.” J. Franklin Inst. 356 (14): 7689–7703. https://doi.org/10.1016/j.jfranklin.2019.02.002.
Wang, F. C., M. K. Liao, B. H. Liao, W. J. Su, and H. A. Chan. 2009. “The performance improvements of train suspension systems with mechanical networks employing inerters.” Veh. Syst. Dyn. 47 (7): 805–830. https://doi.org/10.1080/00423110802385951.
Wang, F.-C., M.-F. Hong, and T.-C. Lin. 2010b. “Designing and testing a hydraulic inerter.” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 225 (1): 66–72. https://doi.org/10.1243/09544062JMES2199.
Wang, X., and G. T. Zheng. 2016. “Equivalent dynamic stiffness mapping technique for identifying nonlinear structural elements from frequency response functions.” Mech. Syst. Sig. Process. 68–69 (Feb): 394–415. https://doi.org/10.1016/j.ymssp.2015.07.011.
Yalla, S. K., and A. Kareem. 2001. “Beat phenomenon in combined structure-liquid damper systems.” Eng. Struct. 23 (6): 622–630. https://doi.org/10.1016/S0141-0296(00)00085-7.
Yan, L., S. Xuan, and X. Gong. 2018. “Shock isolation performance of a geometric anti-spring isolator.” J. Sound Vib. 413 (Jan): 120–143. https://doi.org/10.1016/j.jsv.2017.10.024.
Yu, X., L. Chen, Q. Fang, X. Hou, and Y. Fan. 2018. “Blast mitigation effect of the layered concrete structure with an air gap: A numerical approach.” Int. J. Prot. Struct. 9 (4): 432–460. https://doi.org/10.1177/2041419618766951.
Zhang, P., G. Song, H. N. Li, and Y. X. Lin. 2013. “Seismic control of power transmission tower using pounding TMD.” J. Eng. Mech. 139 (10): 1395–1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576.
Zhang, R., and B. M. Phillips. 2015. “Performance and protection of base-isolated structures under blast loading.” J. Eng. Mech. 142 (1): 04015063. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000974.
Zhang, S. Y., X. Sheng, J. Z. Jiang, H. Zhou, W. X. Ren, and Z. H. Zhang. 2021. “Vibration suppression of bridges under moving loads using the structure-immittance approach.” Int. J. Mech. Sci. 211 (Dec): 106792. https://doi.org/10.1016/j.ijmecsci.2021.106792.
Zhao, Z., R. Zhang, Y. Jiang, and C. Pan. 2019. “A tuned liquid inerter system for vibration control.” Int. J. Mech. Sci. 164 (Dec): 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171.
Zhu, C., J. Yang, and C. Rudd. 2021. “Vibration transmission and power flow of laminated composite plates with inerter-based suppression configurations.” Int. J. Mech. Sci. 190 (Jan): 106012. https://doi.org/10.1016/j.ijmecsci.2020.106012.
Zhu, F., L. Zhao, G. Lu, and Z. Wang. 2008. “Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations.” Int. J. Impact Eng. 35 (8): 937–951. https://doi.org/10.1016/j.ijimpeng.2007.11.003.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 12December 2022

History

Received: Mar 3, 2022
Accepted: Jun 13, 2022
Published online: Sep 28, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 28, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Scholar, School of Interdisciplinary Research (SIRe), Indian Institute of Technology, Delhi, New Delhi 110016, India (corresponding author). ORCID: https://orcid.org/0000-0002-8738-8903. Email: [email protected]; [email protected]
Ashish Darpe
Professor, Dept. of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
Tanusree Chakraborty, M.ASCE
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share