Technical Papers
Jul 27, 2022

Influence of the Perturbation Amplitude and the Froude Number on the Establishment Length of Roll Waves

Publication: Journal of Engineering Mechanics
Volume 148, Issue 10

Abstract

This paper presents a theoretical and numerical analysis of the length required for roll waves to become stationary in a free-surface laminar flow of a Newtonian fluid. Two types of stability analysis are brought to verify flow stability and obtain parameters for wave growth rate in a Saint-Venant like system. Then, numerical simulations are performed of the free-surface laminar transient flow of glycerin. The Navier-Stokes equations were solved using the finite volumes method, Euler schemes and PIMPLE, and the VoF technique to solve the interface. Boundary conditions were specified to obtain a steady and uniform regime given a Froude number. Then, a sinusoidal perturbation with controllable properties was applied to the inlet velocity. From the numerical results, the spatial development of the roll waves was evaluated, focusing on the establishment length as a function of the Froude number and the perturbation amplitude. The analyses performed allowed the verification of the influence of flow hydraulic regime over the establishment length, and it was possible to obtain a new equation as a function of the perturbation amplitude.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The author of this paper thanks the Sombrio Advanced Campus of the Catarinense Federal Institute for granting a full time leave for doctoral studies, through notice No. 21/2019. In particular, the author thanks the IFC Dean’s Office, which made possible to use a computer lab with the OpenFOAM software installed. This resource was of paramount importance for carrying out the numerical simulations that resulted in this study.

References

Alekseenko, S., V. Nakoryakov, and B. Pokusaev. 1985. “Wave formation on vertical falling liquid films.” Int. J. Multiphase Flow 11 (5): 607–627. https://doi.org/10.1016/0301-9322(85)90082-5.
Briggs, R. J. 1964. Electrons-stream interaction with plasmas. Cambridge, MA: MIT Press.
Campomaggiore, F., C. Di Cristo, M. Iervolino, and A. Vacca. 2016a. “Development of roll-waves in power-law fluids with non-uniform initial conditions.” J. Hydraul. Res. 54 (3): 289–306. https://doi.org/10.1080/00221686.2016.1140684.
Campomaggiore, F., C. Di Cristo, M. Iervolino, and A. Vacca. 2016b. “Inlet effects on roll-wave development in shallow turbulent open-channel flows.” J. Hydrol. Hydromech. 64 (1): 45–55. https://doi.org/10.1515/johh-2016-0003.
Cao, Z., P. Hu, K. Hu, G. Pender, and Q. Liu. 2015. “Modelling roll waves with shallow water equations and turbulent closure.” J. Hydraul. Res. 53 (2): 161–177. https://doi.org/10.1080/00221686.2014.950350.
Di Cristo, C., M. Iervolino, and A. Vacca. 2013a. “Boundary conditions effect on linearized mud-flow shallow model.” Acta Geophys. 61 (3): 649–667. https://doi.org/10.2478/s11600-013-0108-2.
Di Cristo, C., M. Iervolino, and A. Vacca. 2013b. “On the applicability of minimum channel length criterion for roll-waves in mud-flows.” J. Hydrol. Hydromech. 61 (4): 286–292. https://doi.org/10.2478/johh-2013-0036.
Di Cristo, C., M. Iervolino, and A. Vacca. 2013c. “Waves dynamics in a linearized mud-flow shallow model.” Appl. Math. Sci. 7 (8): 377–393. https://doi.org/10.12988/ams.2013.13033.
Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh. 2008. “Minimum channel length for roll-wave generation.” J. Hydraul. Res. 46 (1): 73–79. https://doi.org/10.1080/00221686.2008.9521844.
Di Cristo, C., M. Iervolino, A. Vacca, and B. Zanuttigh. 2010. “Influence of relative roughness and Reynolds number on the roll-waves spatial evolution.” J. Hydraul. Eng. 136 (1): 24–33. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000139.
Di Cristo, C., and A. Vacca. 2005. “On the convective nature of roll waves instability.” J. Appl. Math. 2005 (3): 259–271. https://doi.org/10.1155/JAM.2005.259.
Elsayed, O., R. Kirsch, S. Osterroth, and S. Antonyuk. 2021. “An improved scheme for the interface reconstruction and curvature approximation for flow simulations of two immiscible fluids.” Int. J. Multiphase Flow 144 (Nov): 103805. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103805.
Ferreira, F. O., G. F. Maciel, G. H. Fiorot, and E. F. da Cunha. 2014. “Numerical analysis of roll waves generation on non-Newtonian fluids flowing down an inclined plane.” Adv. Mater. Res. 1006–1007 (Aug): 160–167. https://doi.org/10.4028/www.scientific.net/AMR.1006-1007.160.
Ferreira, F. O., G. F. Maciel, and J. B. Pereira. 2021. “Roll waves and their generation criteria.” Braz. J. Water Resour. 26: 18.
Fiorot, G., G. Maciel, E. Cunha, and C. Kitano. 2015. “Experimental setup for measuring roll waves on laminar open channel flows.” Flow Meas. Instrum. 41 (Mar): 149–157. https://doi.org/10.1016/j.flowmeasinst.2014.10.020.
Fiorot, G. H. 2012. Mitigação de riscos e catástrofes naturais: Análise numérico-experimental de roll waves evoluindo em canais inclinados. Ilha Solteira, Brazil: Universidade Estadual Paulista.
Gomes, L. A. C. N. 2015. Estudo da transferência de calor por convecção natural em dissipadores usando openfoam. Ilha Solteira, Brazil: Universidade Estadual Paulista.
Greenshields, C. J. 2019. User guide. 7th ed., 237. Delaware: The OpenFOAM Foundation LTDA.
Herreras, N., and J. Izarra. 2013. Two-phase pipeflow simulations with openfoam. Trondheim, Norway: Norwegian Univ. of Science and Technology.
Hirt, C., and B. Nichols. 1981. “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys. 39 (1): 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Huang, Z., and J.-J. Lee. 2015. “Modeling the spatial evolution of roll waves with diffusive Saint Venant equations.” J. Hydraul. Eng. 141 (2): 06014022. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000959.
Huerre, P., and P. A. Monkewitz. 1990. “Local and global instabilities in spatially developing flows.” Annu. Rev. Fluid Mech. 22 (1): 473–537. https://doi.org/10.1146/annurev.fl.22.010190.002353.
Ishihara, T., Y. Iwagaki, and Y. Iwasa. 1954. “Theory of the roll-wave trains in laminar water flow on a steep slope surface.” Trans. Jpn. Soc. Civ. Eng. 1954 (19): 46–57. https://doi.org/10.2208/jscej1949.1954.46.
Julien, P. Y., and D. M. Hartley. 1985. Formation of roll waves in laminar sheet flow. Technical Rep. CER84-85PYJ-DMH18. Collins, CO: Dept. of Civil Engineering, Colorado State Univ.
Julien, P. Y., and D. M. Hartley. 1986. “Formation of roll waves in laminar sheet flow.” J. Hydraul. Res. 24 (1): 5–17. https://doi.org/10.1080/00221688609499329.
Larsen, B. E., D. R. Fuhrman, and J. Roenby. 2019. “Performance of interfoam on the simulation of progressive waves.” Coastal Eng. J. 61 (3): 380–400. https://doi.org/10.1080/21664250.2019.1609713.
Liu, K., and C. C. Mei. 1994. “Roll waves on a layer of a muddy fluid flowing down a gentle slope—A bingham model.” Phys. Fluids 6 (8): 2577–2590. https://doi.org/10.1063/1.868148.
Maciel, G. F., F. O. Ferreira, and G. H. Fiorot. 2013. “Control of instabilities in non-Newtonian free surface fluid flows.” J. Braz. Soc. Mech. Sci. Eng. 35 (3): 217–229. https://doi.org/10.1007/s40430-013-0025-y.
Maliska, C. 2004. Transferência de Calor e Mecânica dos Fluídos Computacional. 2nd ed., 460. São Paulo: LTC.
Marati, J. R. 2016. Two-phase cfd simulation of turbulent gas-driven liquid film flows on heated walls. Darmstadt, Germany: Erlangung des akademischen grades eines doktor-ingenieur.
Montuori, C. 1961. “La formazione spontanea dei treni d’onde su canalia pendenza molto forte.” L’Energia Elettrica 2 (45): 127–141.
Ng, C.-O., and C. C. Mei. 1994. “Roll waves on a shallow layer of mud modelled as a power-law fluid.” J. Fluid Mech. 263 (4): 151–184. https://doi.org/10.1017/S0022112094004064.
Nusselt, W. 1916. De oberflachenkondensation des waserdampfes. Frankfurt: VDI.
Rocho, V. R., G. H. Fiorot, and S. V. Möller. 2020. “Re-Evaluation of linear stability analysis of Saint-Venant equations: The convective nature of roll-waves instabilities.” In Anais da escola de primavera de transiç ão e turbulência. Rio de Janeiro, Brazil: ABCM Publications.
Ruggiero, M. A. G., and V. L. R. Lopes. 1996. Cálculo numérico: Aspectos teóricos e computacionais. London: Pearson.
Stewart, J. 2013. Cálculo. São Paulo, Brazil: Cengage Learning.
Tamada, K., and H. Tougou. 1979. “Stability of roll-waves on thin laminar flow down an inclined plane wall.” J. Phys. Soc. Jpn. 47 (6): 1992–1998. https://doi.org/10.1143/JPSJ.47.1992.
Ubbink, O., and R. Issa. 1999. “A method for capturing sharp fluid interfaces on arbitrary meshes.” J. Comput. Phys. 153 (1): 26–50. https://doi.org/10.1006/jcph.1999.6276.
Versteeg, H. K., and W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. London: Person.
Zanuttigh, B., and A. Lamberti. 2007. “Instability and surge development in debris flows.” Rev. Geophys. 45 (3): 120–125. https://doi.org/10.1029/2005RG000175.
Zanuttigh, B., and A. Lamberti. 2010. “Roll waves simulation using shallow water equations and weighted average flux method.” J. Hydraul. Res. 40 (5): 610–622. https://doi.org/10.1080/00221680209499905.
Zhu, K., A. Boudlal, and G. Mompean. 2018. “Nonlinear stability of roll waves down an inclined falling film.” World J. Res. Rev. 6 (5): 65–72.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 10October 2022

History

Received: Nov 23, 2021
Accepted: May 17, 2022
Published online: Jul 27, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 27, 2022

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Valdirene da Rosa Rocho [email protected]
Ph.D. Student, Mechanical Engineering Graduate Program, Dept. of Mechanical Engineering, Federal Univ. of Rio Grande do Sul, Rua Sarmento Leite, 425, Porto Alegre, Rio Grande do Sul 90050-170, Brazil. Email: [email protected]
Associate Professor, Rheology and Non-Newtonian Fluid Flow Laboratory, Dept. of Mechanical Engineering, Federal Univ. of Rio Grande do Sul, Rua Sarmento Leite, 425, Porto Alegre, Rio Grande do Sul 90050-170, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9347-7753. Email: [email protected]
Full Professor, Dept. of Mechanical Engineering, Federal Univ. of Rio Grande do Sul, Rua Sarmento Leite, 425, Porto Alegre, Rio Grande do Sul 90050-170, Brazil. ORCID: https://orcid.org/0000-0001-9104-4794. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share