State-of-the-Art Reviews
Oct 31, 2020

State-of-the-Art Review on the Progressive Failure Characteristics of Geomaterials in Peridynamic Theory

Publication: Journal of Engineering Mechanics
Volume 147, Issue 1

Abstract

Peridynamic (PD) theory is an integral-type nonlocal continuum mechanics theory that reformulates the equation of motion in local continuum mechanics as an integrodifferential equation. PD theory has been used to simulate mechanical responses of various materials with discontinuous structures. During the past two decades, PD theory has been developed to simulate different discontinuous problems and to illustrate various discontinuous phenomena in the diverse fields of engineering and sciences. In this paper, a state-of-the-art review on the investigation of failure processes of geomaterials in a PD framework is performed to illustrate the successful results and potential capability of PD theory in future geotechnical engineering. This review starts with a brief theoretical description of a bond-based peridynamic (BB-PD) model, a state-based peridynamic (SB-PD) model, a hybrid PD–classical continuum mechanics model, and an analytical PD model. Then surveys of PD applications to coupled multiphysical failure problems of geomaterials are conducted, which aim at revealing the associated failure mechanism. The applications of PD theory to simulate real geotechnical engineering are subsequently reported. Finally, some future-oriented research perspectives of PD applications in geotechnical engineering and a brief summary are presented.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data sets and codes for this paper can be obtained from the corresponding author upon reasonable request.

Acknowledgments

This work was partially carried out with funding from the Natural Science Foundation of China (Grants Nos. 51679017 and 51839009).

References

Agwai, A., I. Guven, and E. Madenci. 2011. “Predicting crack propagation with peridynamics: A comparative study.” Int. J. Fract. 171 (1): 65–78. https://doi.org/10.1007/s10704-011-9628-4.
Amani, J., E. Oterkus, P. Areias, G. Zi, T. Nguyen-Thoi, and T. Rabczuk. 2016. “A non-ordinary state-based peridynamics formulation for thermoplastic fracture.” Int. J. Impact Eng. 87: 83–94. https://doi.org/10.1016/j.ijimpeng.2015.06.019.
Asgari, M., and M. A. Kouchakzadeh. 2019. “An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics.” Meccanica 54 (7): 1001–1014. https://doi.org/10.1007/s11012-019-00975-8.
Azdoud, Y., F. Han, and G. Lubineau. 2013. “A morphing framework to couple non-local and local anisotropic continua.” Int. J. Solids Struct. 50 (9): 1332–1341. https://doi.org/10.1016/j.ijsolstr.2013.01.016.
Azdoud, Y., F. Han, and G. Lubineau. 2014. “The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture.” Comput. Mech. 54 (3): 711–722. https://doi.org/10.1007/s00466-014-1023-3.
Bazazzadeh, S., F. Mossaiby, and A. Shojaei. 2020. “An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics.” Eng. Fract. Mech. 223: 106708. https://doi.org/10.1016/j.engfracmech.2019.106708.
Bazazzadeh, S., A. Shojaei, M. Zaccariotto, and U. Galvanetto. 2018. “Application of the peridynamic differential operator to the solution of sloshing problems in tanks.” Eng. Comput. 36 (1): 45–83. https://doi.org/10.1108/EC-12-2017-0520.
Beckmann, R., R. Mella, and M. R. Wenman. 2013. “Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus.” Comput. Methods Appl. Mech. Eng. 263: 71–80. https://doi.org/10.1016/j.cma.2013.05.001.
Behzadinasab, M., and J. T. Foster. 2020. “On the stability of the generalized, finite deformation correspondence model of peridynamics.” Int. J. Solids Struct. 182: 64–76. https://doi.org/10.1016/j.ijsolstr.2019.07.030.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Methods Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Bessa, M. A., J. T. Foster, T. Belytschko, and W. K. Liu. 2014. “A meshfree unification: Reproducing kernel peridynamics.” Comput. Mech. 53 (6): 1251–1264. https://doi.org/10.1007/s00466-013-0969-x.
Bie, Y., X. Y. Cui, and Z. C. Li. 2018. “A coupling approach of state-based peridynamics with node-based smoothed finite element method.” Comput. Methods Appl. Mech. Eng. 331: 675–700. https://doi.org/10.1016/j.cma.2017.11.022.
Bie, Y., S. Li, X. Hu, and X. Cui. 2019. “An implicit dual-based approach to couple peridynamics with classical continuum mechanics.” Int. J. Numer. Methods Eng. 120 (12): 1349–1379. https://doi.org/10.1002/nme.6182.
Bobaru, F., and M. Duangpanya. 2010. “The peridynamic formulation for transient heat conduction.” Int. J. Heat Mass Transfer 53 (19–20): 4047–4059. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.024.
Bobaru, F., and M. Duangpanya. 2012. “A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities.” J. Comput. Phys. 231 (7): 2764–2785. https://doi.org/10.1016/j.jcp.2011.12.017.
Bobaru, F., and Y. D. Ha. 2011. “Adaptive refinement and multiscale modeling in 2D peridynamics.” Int. J. Multiscale Comput. Eng. 9 (6): 635–660. https://doi.org/10.1615/IntJMultCompEng.2011002793.
Bobaru, F., M. Yang, L. F. Alves, S. A. Silling, E. Askari, and J. Xu. 2009. “Convergence, adaptive refinement, and scaling in 1D peridynamics.” Int. J. Numer. Methods Eng. 77 (6): 852–877. https://doi.org/10.1002/nme.2439.
Bobet, A., and H. H. Einstein. 1998. “Fracture coalescence in rock-type materials under uniaxial and biaxial compression.” Int. J. Rock Mech. Min. Sci. 35 (7): 863–888. https://doi.org/10.1016/S0148-9062(98)00005-9.
Bode, T., C. Weißenfels, and P. Wriggers. 2020. “Peridynamic Petrov–Galerkin method: A generalization of the peridynamic theory of correspondence materials.” Comput. Methods Appl. Mech. Eng. 358: 112636. https://doi.org/10.1016/j.cma.2019.112636.
Bouchard, P. O., F. Bay, Y. Chastel, and I. Tovena. 2000. “Crack propagation modelling using an advanced remeshing technique.” Comput. Methods Appl. Mech. Eng. 189 (3): 723–742. https://doi.org/10.1016/S0045-7825(99)00324-2.
Breitenfeld, M. 2014. “Quasi-static non-ordinary state-based peridynamics for the modeling of 3D fracture.” Doctoral dissertation, Univ. of Illinois at Urbana-Champaign.
Breitenfeld, M. S., P. H. Geubelle, O. Weckner, and S. A. Silling. 2014. “Non-ordinary state-based peridynamic analysis of stationary crack problems.” Comput. Methods Appl. Mech. Eng. 272: 233–250. https://doi.org/10.1016/j.cma.2014.01.002.
Breitzman, T., and K. Dayal. 2018. “Bond-level deformation gradients and energy averaging in peridynamics.” J. Mech. Phys. Solids 110: 192–204. https://doi.org/10.1016/j.jmps.2017.09.015.
Bui, H. H., R. Fukagawa, K. Sako, and J. C. Wells. 2011. “Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH).” Géotechnique 61 (7): 565–574. https://doi.org/10.1680/geot.9.P.046.
Butt, S. N., J. J. Timothy, and G. Meschke. 2017. “Wave dispersion and propagation in state-based peridynamics.” Comput. Mech. 60 (5): 725–738. https://doi.org/10.1007/s00466-017-1439-7.
Cai, X., Z. Zhou, and X. Du. 2020. “Water-induced variations in dynamic behavior and failure characteristics of sandstone subjected to simulated geo-stress.” Int. J. Rock Mech. Min. Sci. 130: 104339. https://doi.org/10.1016/j.ijrmms.2020.104339.
Cao, R. H., P. Cao, H. Lin, C. Z. Pu, and K. Ou. 2016. “Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach.” Rock Mech. Rock Eng. 49 (3): 763–783. https://doi.org/10.1007/s00603-015-0779-x.
Chen, H. 2018. “Bond-associated deformation gradients for peridynamic correspondence model.” Mech. Res. Commun. 90: 34–41. https://doi.org/10.1016/j.mechrescom.2018.04.004.
Chen, H., and B. W. Spencer. 2019. “Peridynamic bond-associated correspondence model: Stability and convergence properties.” Int. J. Numer. Methods Eng. 117 (6): 713–727. https://doi.org/10.1002/nme.5973.
Chen, X., and M. Gunzburger. 2011. “Continuous and discontinuous finite element methods for a peridynamics model of mechanics.” Comput. Methods Appl. Mech. Eng. 200 (9–12): 1237–1250. https://doi.org/10.1016/j.cma.2010.10.014.
Chen, Z., and F. Bobaru. 2015a. “Peridynamic modeling of pitting corrosion damage.” J. Mech. Phys. Solids 78: 352–381. https://doi.org/10.1016/j.jmps.2015.02.015.
Chen, Z., and F. Bobaru. 2015b. “Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion.” Comput. Phys. Commun. 197: 51–60. https://doi.org/10.1016/j.cpc.2015.08.006.
Chen, Z., S. Niazi, and F. Bobaru. 2019. “A peridynamic model for brittle damage and fracture in porous materials.” Int. J. Rock Mech. Min. Sci. 122: 104059. https://doi.org/10.1016/j.ijrmms.2019.104059.
Cheng, H., X. Zhou, J. Zhu, and Q. Qian. 2016. “The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression.” Rock Mech. Rock Eng. 49 (9): 3481–3494. https://doi.org/10.1007/s00603-016-0998-9.
Choo, J., and W. Sun. 2018. “Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow.” Comput. Methods Appl. Mech. Eng. 330: 1–32. https://doi.org/10.1016/j.cma.2017.10.009.
Chowdhury, S. R., P. Roy, D. Roy, and J. N. Reddy. 2019. “A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications.” Comput. Methods Appl. Mech. Eng. 346: 530–549. https://doi.org/10.1016/j.cma.2018.11.025.
Clayton, J. D. 2008. “A model for deformation and fragmentation in crushable brittle solids.” Int. J. Impact Eng. 35 (5): 269–289. https://doi.org/10.1016/j.ijimpeng.2007.02.002.
D’Antuono, P., and M. Morandini. 2017. “Thermal shock response via weakly coupled peridynamic thermo-mechanics.” Int. J. Solids Struct. 129: 74–89. https://doi.org/10.1016/j.ijsolstr.2017.09.010.
Delgoshaie, A. H., D. W. Meyer, P. Jenny, and H. A. Tchelepi. 2015. “Non-local formulation for multiscale flow in porous media.” J. Hydrol. 531: 649–654. https://doi.org/10.1016/j.jhydrol.2015.10.062.
Demmie, P., and S. Silling. 2007. “An approach to modeling extreme loading of structures using peridynamics.” J. Mech. Mater. Struct. 2 (10): 1921–1945. https://doi.org/10.2140/jomms.2007.2.1921.
Diana, V., and S. Casolo. 2019a. “A bond-based micropolar peridynamic model with shear deformability: Elasticity, failure properties and initial yield domains.” Int. J. Solids Struct. 160: 201–231. https://doi.org/10.1016/j.ijsolstr.2018.10.026.
Diana, V., and S. Casolo. 2019b. “A full orthotropic micropolar peridynamic formulation for linearly elastic solids.” Int. J. Mech. Sci. 160: 140–155. https://doi.org/10.1016/j.ijmecsci.2019.06.036.
Dipasquale, D., G. Sarego, M. Zaccariotto, and U. Galvanetto. 2017. “A discussion on failure criteria for ordinary state-based peridynamics.” Eng. Fract. Mech. 186: 378–398. https://doi.org/10.1016/j.engfracmech.2017.10.011.
Dipasquale, D., M. Zaccariotto, and U. Galvanetto. 2014. “Crack propagation with adaptive grid refinement in 2D peridynamics.” Int. J. Fract. 190 (1–2): 1–22. https://doi.org/10.1007/s10704-014-9970-4.
Diyaroglu, C., E. Madenci, and N. Phan. 2019. “Peridynamic homogenization of microstructures with orthotropic constituents in a finite element framework.” Compos. Struct. 227: 111334. https://doi.org/10.1016/j.compstruct.2019.111334.
Dolbow, J., N. Moës, and T. Belytschko. 2001. “An extended finite element method for modeling crack growth with frictional contact.” Comput. Methods Appl. Mech. Eng. 190 (51–52): 6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2.
Du, Q., L. Ju, L. Tian, and K. Zhou. 2013. “A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models.” Math. Comput. 82 (284): 1889–1922. https://doi.org/10.1090/S0025-5718-2013-02708-1.
Du, Q., and X. Tian. 2018. “Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling.” SIAM J. Appl. Math. 78 (3): 1536–1552. https://doi.org/10.1137/17M1139874.
Fan, H., G. L. Bergel, and S. Li. 2016. “A hybrid peridynamics–SPH simulation of soil fragmentation by blast loads of buried explosive.” Int. J. Impact Eng. 87: 14–27. https://doi.org/10.1016/j.ijimpeng.2015.08.006.
Fan, H., and S. Li. 2017a. “Parallel peridynamics–SPH simulation of explosion induced soil fragmentation by using OpenMP.” Comput. Particle Mech. 4 (2): 199–211. https://doi.org/10.1007/s40571-016-0116-5.
Fan, H., and S. Li. 2017b. “A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads.” Comput. Method Appl. Mech. Eng. 318: 349–381. https://doi.org/10.1016/j.cma.2017.01.026.
Fan, H., H. Zheng, and J. Zhao. 2017. “Discontinuous deformation analysis based on strain-rotation decomposition.” Int. J. Rock Mech. Min. Sci. 92: 19–29. https://doi.org/10.1016/j.ijrmms.2016.12.003.
Fang, G., S. Liu, M. Fu, B. Wang, Z. Wu, and J. Liang. 2019. “A method to couple state-based peridynamics and finite element method for crack propagation problem.” Mech. Res. Commun. 95: 89–95. https://doi.org/10.1016/j.mechrescom.2019.01.005.
Foster, J. T., S. A. Silling, and W. W. Chen. 2010. “Viscoplasticity using peridynamics.” Int. J. Numer. Methods Eng. 81 (10): 1242–1258. https://doi.org/10.1002/nme.2725.
Foster, J. T., S. A. Silling, and W. W. Chen. 2011. “An energy based failure criterion for use with peridynamic states.” Int. J. Multiscale Comput. Eng. 9 (6): 675–688. https://doi.org/10.1615/IntJMultCompEng.2011002407.
Foster, J. T., and X. Xu. 2018. “A generalized, ordinary, finite deformation constitutive correspondence model for peridynamics.” Int. J. Solids Struct. 141: 245–253. https://doi.org/10.1016/j.ijsolstr.2018.02.026.
Galvanetto, U., T. Mudric, A. Shojaei, and M. Zaccariotto. 2016. “An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems.” Mech. Res. Commun. 76: 41–47. https://doi.org/10.1016/j.mechrescom.2016.06.006.
Ganzenmüller, G. C., S. Hiermaier, and M. May. 2015. “On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics.” Comput. Struct. 150: 71–78. https://doi.org/10.1016/j.compstruc.2014.12.011.
Gao, Y., and S. Oterkus. 2019. “Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory.” Compos. Struct. 207: 397–424. https://doi.org/10.1016/j.compstruct.2018.09.034.
Gerstle, W., N. Sau, and S. Silling. 2007. “Peridynamic modeling of concrete structures.” Nucl. Eng. Des. 237 (12–13): 1250–1258. https://doi.org/10.1016/j.nucengdes.2006.10.002.
Giannakeas, I. N., T. K. Papathanasiou, and H. Bahai. 2018. “Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM.” J. Eur. Ceram. Soc. 38 (8): 3037–3048. https://doi.org/10.1016/j.jeurceramsoc.2017.12.039.
Gu, X., E. Madenci, and Q. Zhang. 2018. “Revisit of non-ordinary state-based peridynamics.” Eng. Fract. Mech. 190: 31–52. https://doi.org/10.1016/j.engfracmech.2017.11.039.
Gu, X., Q. Zhang, D. Huang, and Y. Yv. 2016. “Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics.” Eng. Fract. Mech. 160: 124–137. https://doi.org/10.1016/j.engfracmech.2016.04.005.
Gu, X., Q. Zhang, and E. Madenci. 2019a. “Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal.” Eng. Fract. Mech. 218: 106568. https://doi.org/10.1016/j.engfracmech.2019.106568.
Gu, X., Q. Zhang, and E. Madenci. 2019b. “Refined bond-based peridynamics for thermal diffusion.” Eng. Comput. 36 (8): 2557–2587. https://doi.org/10.1108/EC-09-2018-0433.
Gu, X., Q. Zhang, E. Madenci, and X. Xia. 2019c. “Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model.” Comput. Methods Appl. Mech. Eng. 357: 112592. https://doi.org/10.1016/j.cma.2019.112592.
Gu, X., Q. Zhang, and X. Xia. 2017a. “Voronoi-based peridynamics and cracking analysis with adaptive refinement.” Int. J. Numer. Methods Eng. 112 (13): 2087–2109. https://doi.org/10.1002/nme.5596.
Gu, X., Q. Zhang, and Y. Yu. 2017b. “An effective way to control numerical instability of a nonordinary state-based peridynamic elastic model.” Math. Prob. Eng. 2017: 7. https://doi.org/10.1155/2017/1750876.
Ha, Y. D., and F. Bobaru. 2010. “Studies of dynamic crack propagation and crack branching with peridynamics.” Int. J. Fract. 162 (1–2): 229–244. https://doi.org/10.1007/s10704-010-9442-4.
Ha, Y. D., and F. Bobaru. 2011. “Characteristics of dynamic brittle fracture captured with peridynamics.” Eng. Fract. Mech. 78 (6): 1156–1168. https://doi.org/10.1016/j.engfracmech.2010.11.020.
Ha, Y. D., J. Lee, and J. W. Hong. 2015. “Fracturing patterns of rock-like materials in compression captured with peridynamics.” Eng. Fract. Mech. 144: 176–193. https://doi.org/10.1016/j.engfracmech.2015.06.064.
Han, F., and G. Lubineau. 2012. “Coupling of nonlocal and local continuum models by the Arlequin approach.” Int. J. Numer. Methods Eng. 89 (6): 671–685. https://doi.org/10.1002/nme.3255.
Han, F., G. Lubineau, and Y. Azdoud. 2016a. “Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure.” J. Mech. Phys. Solids 94: 453–472. https://doi.org/10.1016/j.jmps.2016.05.017.
Han, F., G. Lubineau, Y. Azdoud, and A. Askari. 2016b. “A morphing approach to couple state-based peridynamics with classical continuum mechanics.” Comput. Methods Appl. Mech. Eng. 301: 336–358. https://doi.org/10.1016/j.cma.2015.12.024.
He, L., X. M. An, G. W. Ma, and Z. Y. Zhao. 2013. “Development of three-dimensional numerical manifold method for jointed rock slope stability analysis.” Int. J. Rock Mech. Min. Sci. 64: 22–35. https://doi.org/10.1016/j.ijrmms.2013.08.015.
Horii, H., and S. Nemat-Nasser. 1985. “Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure.” J. Geophys. Res. Solid Earth 90 (B4): 3105–3125. https://doi.org/10.1029/JB090iB04p03105.
Hu, W., Y. D. Ha, and F. Bobaru. 2011. “Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics.” Int. J. Multiscale Comput. Eng. 9 (6): 707–726. https://doi.org/10.1615/IntJMultCompEng.2011002651.
Hu, W., Y. D. Ha, and F. Bobaru. 2012a. “Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites.” Comput. Methods Appl. Mech. Eng. 217: 247–261. https://doi.org/10.1016/j.cma.2012.01.016.
Hu, W., Y. D. Ha, F. Bobaru, and S. A. Silling. 2012b. “The formulation and computation of the nonlocal J-integral in bond-based peridynamics.” Int. J. Fract. 176 (2): 195–206. https://doi.org/10.1007/s10704-012-9745-8.
Hu, Y., and E. Madenci. 2016. “Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence.” Compos. Struct. 153: 139–175. https://doi.org/10.1016/j.compstruct.2016.05.063.
Hu, Y., E. Madenci, and N. Phan. 2017. “Peridynamics for predicting damage and its growth in composites.” Fatigue Fract. Eng. Mater. Struct. 40 (8): 1214–1226. https://doi.org/10.1111/ffe.12618.
Huang, D., G. Lu, and P. Qiao. 2015a. “An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis.” Int. J. Mech. Sci. 94: 111–122. https://doi.org/10.1016/j.ijmecsci.2015.02.018.
Huang, D., G. Lu, C. Wang, and P. Qiao. 2015b. “An extended peridynamic approach for deformation and fracture analysis.” Eng. Fract. Mech. 141: 196–211. https://doi.org/10.1016/j.engfracmech.2015.04.036.
Huang, D., Q. Zhang, and P. Qiao. 2011. “Damage and progressive failure of concrete structures using non-local peridynamic modeling.” Sci. China Technol. Sci. 54 (3): 591–596. https://doi.org/10.1007/s11431-011-4306-3.
Huang, D., Q. Zhang, P. Qiao, and F. Shen. 2010. “A review on peridynamics method and its applications.” [In Chinese.] Adv. Mech. 40 (4): 448–459. https://doi.org/10.6052/1000-0992-2010-4-J2010-002.
Huang, X., Z. Bie, L. Wang, Y. Jin, X. Liu, G. Su, and X. He. 2019a. “Finite element method of bond-based peridynamics and its ABAQUS implementation.” Eng. Fract. Mech. 206: 408–426. https://doi.org/10.1016/j.engfracmech.2018.11.048.
Huang, X., S. Li, Y. Jin, D. Yang, G. Su, and X. He. 2019b. “Analysis on the influence of Poisson’s ratio on brittle fracture by applying uni-bond dual-parameter peridynamic model.” Eng. Fract. Mech. 222: 106685. https://doi.org/10.1016/j.engfracmech.2019.106685.
Huang, Z. 2012. “Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions.” Int. J. Solids Struct. 49 (15–16): 2150–2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020.
Huang, Z. 2013. “On conservation laws in nonlocal elasticity associated with internal long-range interactions.” Math. Mech. Solids 18 (8): 861–875. https://doi.org/10.1177/1081286512454282.
Huang, Z. 2018. “The singularity in the state-based peridynamic solution of uniaxial tension.” Theor. Appl. Mech. Lett. 8 (5): 351–354. https://doi.org/10.1016/j.taml.2018.05.008.
Huang, Z. 2019a. “Noether’s theorem in peridynamics.” Math. Mech. Solids 24 (11): 3394–3402. https://doi.org/10.1177/1081286518812931.
Huang, Z. 2019b. “Revisiting the peridynamic motion equation due to characterization of boundary conditions.” Acta Mech. Sin. 35 (5): 972–980. https://doi.org/10.1007/s10409-019-00860-3.
Imachi, M., S. Tanaka, and T. Q. Bui. 2018. “Mixed-mode dynamic stress intensity factors evaluation using ordinary state-based peridynamics.” Theor. Appl. Fract. Mech. 93: 97–104. https://doi.org/10.1016/j.tafmec.2017.07.008.
Jabakhanji, R., and R. H. Mohtar. 2015. “A peridynamic model of flow in porous media.” Adv. Water Resour. 78: 22–35. https://doi.org/10.1016/j.advwatres.2015.01.014.
Jafarzadeh, S., Z. Chen, S. Li, and F. Bobaru. 2019a. “A peridynamic mechano-chemical damage model for stress-assisted corrosion.” Electrochim. Acta 323: 134795. https://doi.org/10.1016/j.electacta.2019.134795.
Jafarzadeh, S., Z. Chen, J. Zhao, and F. Bobaru. 2019b. “Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models.” Corros. Sci. 150: 17–31. https://doi.org/10.1016/j.corsci.2019.01.006.
Javili, A., R. Morasata, E. Oterkus, and S. Oterkus. 2019. “Peridynamics review.” Math. Mech. Solids 24 (11): 3714–3739. https://doi.org/10.1177/1081286518803411.
Katiyar, A., J. T. Foster, H. Ouchi, and M. M. Sharma. 2014. “A peridynamic formulation of pressure driven convective fluid transport in porous media.” J. Comput. Phys. 261: 209–229. https://doi.org/10.1016/j.jcp.2013.12.039.
Kilic, B., A. Agwai, and E. Madenci. 2009. “Peridynamic theory for progressive damage prediction in center-cracked composite laminates.” Compos. Struct. 90 (2): 141–151. https://doi.org/10.1016/j.compstruct.2009.02.015.
Kilic, B., and E. Madenci. 2009a. “Prediction of crack paths in a quenched glass plate by using peridynamic theory.” Int. J. Fract. 156 (2): 165–177. https://doi.org/10.1007/s10704-009-9355-2.
Kilic, B., and E. Madenci. 2009b. “Peridynamic theory for thermomechanical analysis.” IEEE Trans. Adv. Packag. 33 (1): 97–105. https://doi.org/10.1109/TADVP.2009.2029079.
Kilic, B., and E. Madenci. 2010a. “An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory.” Theor. Appl. Fract. Mech. 53 (3): 194–204. https://doi.org/10.1016/j.tafmec.2010.08.001.
Kilic, B., and E. Madenci. 2010b. “Coupling of peridynamic theory and the finite element method.” J. Mech. Mater. Struct. 5 (5): 707–733. https://doi.org/10.2140/jomms.2010.5.707.
Kou, M., D. Han, C. Xiao, and Y. Wang. 2019a. “Dynamic fracture instability in brittle materials: Insights from DEM simulations.” Struct. Eng. Mech. 71 (1): 65–75. https://doi.org/10.12989/sem.2019.71.1.065.
Kou, M., Y. J. Lian, and Y. T. Wang. 2019b. “Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model.” Eng. Fract. Mech. 212: 41–56. https://doi.org/10.1016/j.engfracmech.2019.03.012.
Kou, M., X. Liu, S. Tang, and Y. Wang. 2019c. “3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading.” Theor. Appl. Fract. Mech. 104: 102396. https://doi.org/10.1016/j.tafmec.2019.102396.
Kou, M., X. Liu, and Y. Wang. 2020. “Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction.” Struct. Eng. Mech. 74 (2): 283–296. https://doi.org/10.12989/sem.2020.74.2.283.
Lai, X., L. Liu, S. Li, M. Zeleke, Q. Liu, and Z. Wang. 2018. “A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials.” Int. J. Impact Eng. 111: 130–146. https://doi.org/10.1016/j.ijimpeng.2017.08.008.
Le, Q. V., and F. Bobaru. 2018. “Objectivity of state-based peridynamic models for elasticity.” J. Elast. 131 (1): 1–17. https://doi.org/10.1007/s10659-017-9641-6.
Le, Q. V., W. K. Chan, and J. Schwartz. 2014. “A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids.” Int. J. Numer. Methods Eng. 98 (8): 547–561. https://doi.org/10.1002/nme.4642.
Lee, J., Y. D. Ha, and J. W. Hong. 2017a. “Crack coalescence morphology in rock-like material under compression.” Int. J. Fract. 203 (1–2): 211–236. https://doi.org/10.1007/s10704-016-0138-2.
Lee, J., and J. W. Hong. 2019. “Morphological aspects of crack growth in rock materials with various flaws.” Int. J. Numer. Anal. Methods Geomech. 43 (10): 1854–1866. https://doi.org/10.1002/nag.2938.
Lee, J., J. W. Hong, and J. W. Jung. 2017b. “The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws.” Eng. Geol. 223: 31–47. https://doi.org/10.1016/j.enggeo.2017.04.014.
Lee, J., S. E. Oh, and J. W. Hong. 2017c. “Parallel programming of a peridynamics code coupled with finite element method.” Int. J. Fract. 203 (1–2): 99–114. https://doi.org/10.1007/s10704-016-0121-y.
Lehoucq, R. B., and S. A. Silling. 2008. “Force flux and the peridynamic stress tensor.” J. Mech. Phys. Solids 56 (4): 1566–1577. https://doi.org/10.1016/j.jmps.2007.08.004.
Li, H., H. Zhang, Y. Zheng, H. Ye, and M. Lu. 2018a. “An implicit coupling finite element and peridynamic method for dynamic problems of solid mechanics with crack propagation.” Int. J. Appl. Mech. 10 (04): 1850037. https://doi.org/10.1142/S1758825118500370.
Li, P., Z. M. Hao, and W. Q. Zhen. 2018b. “A stabilized non-ordinary state-based peridynamic model.” Comput. Methods Appl. Mech. Eng. 339: 262–280. https://doi.org/10.1016/j.cma.2018.05.002.
Li, T., X. Gu, Q. Zhang, and D. Lei. 2019. “Coupled digital image correlation and peridynamics for full-field deformation measurement and local damage prediction.” CMES-Comput. Model. Eng. Sci. 121 (2): 425–444. https://doi.org/10.32604/cmes.2019.06700.
Li, W. J., Q. Z. Zhu, and T. Ni. 2020. “A local strain-based implementation strategy for the extended peridynamic model with bond rotation.” Comput. Methods Appl. Mech. Eng. 358: 112625. https://doi.org/10.1016/j.cma.2019.112625.
Li, Y. P., L. Z. Chen, and Y. H. Wang. 2005. “Experimental research on pre-cracked marble under compression.” Int. J. Solids Struct. 42 (9–10): 2505–2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
Lin, E., H. Chen, and Y. Liu. 2015. “Finite element implementation of a non-local particle method for elasticity and fracture analysis.” Finite Elem. Anal. Des. 93: 1–11. https://doi.org/10.1016/j.finel.2014.08.008.
Littlewood, D. J. 2010. “Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.” In Vol. 9 of Proc., Mechanics of Solids, Structures and Fluids. ASME 2010 Int. Mechanical Engineering Congress and Exposition, 209–217. New York: ASME.
Liu, W., and J. W. Hong. 2012a. “A coupling approach of discretized peridynamics with finite element method.” Comput. Methods Appl. Mech. Eng. 245: 163–175. https://doi.org/10.1016/j.cma.2012.07.006.
Liu, W., and J. W. Hong. 2012b. “Discretized peridynamics for linear elastic solids.” Comput. Mech. 50 (5): 579–590. https://doi.org/10.1007/s00466-012-0690-1.
Liu, Y., F. Dai, L. Dong, N. Xu, and P. Feng. 2018. “Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters.” Rock Mech. Rock Eng. 51 (1): 47–68. https://doi.org/10.1007/s00603-017-1327-7.
Lubineau, G., Y. Azdoud, F. Han, C. Rey, and A. Askari. 2012. “A morphing strategy to couple non-local to local continuum mechanics.” J. Mech. Phys. Solids 60 (6): 1088–1102. https://doi.org/10.1016/j.jmps.2012.02.009.
Luo, J., and V. Sundararaghavan. 2018. “Stress-point method for stabilizing zero-energy modes in non-ordinary state-based peridynamics.” Int. J. Solids Struct. 150: 197–207. https://doi.org/10.1016/j.ijsolstr.2018.06.015.
Macek, R. W., and S. A. Silling. 2007. “Peridynamics via finite element analysis.” Finite Elem. Anal. Des. 43 (15): 1169–1178. https://doi.org/10.1016/j.finel.2007.08.012.
Madenci, E., A. Barut, and N. Phan. 2018a. “Peridynamic unit cell homogenization for thermoelastic properties of heterogenous microstructures with defects.” Compos. Struct. 188: 104–115. https://doi.org/10.1016/j.compstruct.2018.01.009.
Madenci, E., M. Dorduncu, A. Barut, and N. Phan. 2018b. “A state-based peridynamic analysis in a finite element framework.” Eng. Fract. Mech. 195: 104–128. https://doi.org/10.1016/j.engfracmech.2018.03.033.
Madenci, E., and E. Oterkus. 2014. Peridynamic theory and its applications. New York: Springer.
Madenci, E., and S. Oterkus. 2016. “Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening.” J. Mech. Phys. Solids 86: 192–219. https://doi.org/10.1016/j.jmps.2015.09.016.
Mehrmashhadi, J., Z. Chen, J. Zhao, and F. Bobaru. 2019a. “A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites.” Compos. Sci. Technol. 182: 107770. https://doi.org/10.1016/j.compscitech.2019.107770.
Mehrmashhadi, J., L. Wang, and F. Bobaru. 2019b. “Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip.” Eng. Fract. Mech. 219: 106617. https://doi.org/10.1016/j.engfracmech.2019.106617.
Mella, R., and M. R. Wenman. 2015. “Modelling explicit fracture of nuclear fuel pellets using peridynamics.” J. Nucl. Mater. 467: 58–67. https://doi.org/10.1016/j.jnucmat.2015.08.037.
Mikata, Y. 2012. “Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod.” Int. J. Solids Struct. 49 (21): 2887–2897. https://doi.org/10.1016/j.ijsolstr.2012.02.012.
Mikata, Y. 2019. “Linear peridynamics for isotropic and anisotropic materials.” Int. J. Solids Struct. 158: 116–127. https://doi.org/10.1016/j.ijsolstr.2018.09.004.
Monaghan, J. J. 1988. “An introduction to SPH.” Comput. Phys. Comm. 48 (1): 89–96. https://doi.org/10.1016/0010-4655(88)90026-4.
Mossaiby, F., A. Shojaei, M. Zaccariotto, and U. Galvanetto. 2017. “OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators.” Comput. Math. Appl. 74 (8): 1856–1870. https://doi.org/10.1016/j.camwa.2017.06.045.
Nadimi, S., I. Miscovic, and J. McLennan. 2016. “A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium.” J. Pet. Sci. Eng. 145: 444–452. https://doi.org/10.1016/j.petrol.2016.05.032.
Ni, T., F. Pesavento, M. Zaccariotto, U. Galvanetto, Q. Z. Zhu, and B. A. Schrefler. 2020. “Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media.” Comput. Methods Appl. Mech. Eng. 366: 113101. https://doi.org/10.1016/j.cma.2020.113101.
Ni, T., M. Zaccariotto, Q. Z. Zhu, and U. Galvanetto. 2019a. “Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D.” Mech. Adv. Mater. Struct. 1–16. https://doi.org/10.1080/15376494.2019.1602237.
Ni, T., M. Zaccariotto, Q. Z. Zhu, and U. Galvanetto. 2019b. “Static solution of crack propagation problems in Peridynamics.” Comput. Methods Appl. Mech. Eng. 346: 126–151. https://doi.org/10.1016/j.cma.2018.11.028.
Nikpayam, J., and M. A. Kouchakzadeh. 2019. “A variable horizon method for coupling meshfree peridynamics to FEM.” Comput. Methods Appl. Mech. Eng. 355: 308–322. https://doi.org/10.1016/j.cma.2019.06.027.
O’Grady, J., and J. Foster. 2014a. “Peridynamic beams: A non-ordinary, state-based model.” Int. J. Solids Struct. 51 (18): 3177–3183. https://doi.org/10.1016/j.ijsolstr.2014.05.014.
O’Grady, J., and J. Foster. 2014b. “Peridynamic plates and flat shells: A non-ordinary, state-based model.” Int. J. Solids Struct. 51 (25–26): 4572–4579. https://doi.org/10.1016/j.ijsolstr.2014.09.003.
O’Grady, J., and J. Foster. 2016. “A meshfree method for bending and failure in non-ordinary peridynamic shells.” Comput. Mech. 57 (6): 921–929. https://doi.org/10.1007/s00466-016-1269-z.
Oterkus, E., and E. Madenci. 2012. “Peridynamic analysis of fiber-reinforced composite materials.” J. Mech. Mater. Struct. 7 (1): 45–84. https://doi.org/10.2140/jomms.2012.7.45.
Oterkus, S., and E. Madenci. 2015. “Peridynamics for antiplane shear and torsional deformations.” J. Mech. Mater. Struct. 10 (2): 167–193. https://doi.org/10.2140/jomms.2015.10.167.
Oterkus, S., and E. Madenci. 2017. “Peridynamic modeling of fuel pellet cracking.” Eng. Fract. Mech. 176: 23–37. https://doi.org/10.1016/j.engfracmech.2017.02.014.
Oterkus, S., E. Madenci, and A. Agwai. 2014a. “Fully coupled peridynamic thermomechanics.” J. Mech. Phys. Solids 64: 1–23. https://doi.org/10.1016/j.jmps.2013.10.011.
Oterkus, S., E. Madenci, and A. Agwai. 2014b. “Peridynamic thermal diffusion.” J. Comput. Phys. 265: 71–96. https://doi.org/10.1016/j.jcp.2014.01.027.
Oterkus, S., E. Madenci, and E. Oterkus. 2017. “Fully coupled poroelastic peridynamic formulation for fluid-filled fractures.” Eng. Geol. 225: 19–28. https://doi.org/10.1016/j.enggeo.2017.02.001.
Ouchi, H., A. Katiyar, J. York, J. T. Foster, and M. M. Sharma. 2015. “A fully coupled porous flow and geomechanics model for fluid driven cracks: A peridynamics approach.” Comput. Mech. 55 (3): 561–576. https://doi.org/10.1007/s00466-015-1123-8.
Paluszny, A., and S. K. Matthäi. 2009. “Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media.” Int. J. Solids Struct. 46 (18–19): 3383–3397. https://doi.org/10.1016/j.ijsolstr.2009.05.007.
Panchadhara, R., P. A. Gordon, and M. L. Parks. 2017. “Modeling propellant-based stimulation of a borehole with peridynamics.” Int. J. Rock Mech. Min. Sci. 93: 330–343. https://doi.org/10.1016/j.ijrmms.2017.02.006.
Park, C. H., and A. Bobet. 2010. “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression.” Eng. Fract. Mech. 77 (14): 2727–2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
Pasetto, M., Y. Leng, J. S. Chen, J. T. Foster, and P. Seleson. 2018. “A reproducing kernel enhanced approach for peridynamic solutions.” Comput. Methods Appl. Mech. Eng. 340: 1044–1078. https://doi.org/10.1016/j.cma.2018.05.010.
Pashazad, H., and M. Kharazi. 2019. “A peridynamic plastic model based on von Mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading.” Int. J. Mech. Sci. 156: 182–204. https://doi.org/10.1016/j.ijmecsci.2019.03.033.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Prakash, N., and G. D. Seidel. 2015. “A novel two-parameter linear elastic constitutive model for bond based peridynamics.” In Proc., 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. New York: American Institute of Aeronautics and Astronautics.
Queiruga, A. F., and G. Moridis. 2017. “Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems.” Comput. Methods Appl. Mech. Eng. 322: 97–122. https://doi.org/10.1016/j.cma.2017.04.016.
Rabczuk, T., and T. Belytschko. 2004. “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” Int. J. Numer. Methods Eng. 61 (13): 2316–2343. https://doi.org/10.1002/nme.1151.
Rabczuk, T., and T. Belytschko. 2007. “A three-dimensional large deformation meshfree method for arbitrary evolving cracks.” Comput. Methods Appl. Mech. Eng. 196 (29–30): 2777–2799. https://doi.org/10.1016/j.cma.2006.06.020.
Rabczuk, T., and H. Ren. 2017. “A peridynamics formulation for quasi-static fracture and contact in rock.” Eng. Geol. 225: 42–48. https://doi.org/10.1016/j.enggeo.2017.05.001.
Ren, B., H. Fan, G. L. Bergel, R. A. Regueiro, X. Lai, and S. Li. 2015. “A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves.” Comput. Mech. 55 (2): 287–302. https://doi.org/10.1007/s00466-014-1101-6.
Ren, H., X. Zhuang, Y. Cai, and T. Rabczuk. 2016. “Dual-horizon peridynamics.” Int. J. Numer. Methods Eng. 108 (12): 1451–1476. https://doi.org/10.1002/nme.5257.
Ren, H., X. Zhuang, and T. Rabczuk. 2017. “Dual-horizon peridynamics: A stable solution to varying horizons.” Comput. Methods Appl. Mech. Eng. 318: 762–782. https://doi.org/10.1016/j.cma.2016.12.031.
Rokkam, S., M. Gunzburger, M. Brothers, N. Phan, and K. Goel. 2019. “A nonlocal peridynamics modeling approach for corrosion damage and crack propagation.” Theor. Appl. Fract. Mech. 101: 373–387. https://doi.org/10.1016/j.tafmec.2019.03.010.
Sarego, G., Q. V. Le, F. Bobaru, M. Zaccariotto, and U. Galvanetto. 2016. “Linearized state-based peridynamics for 2-D problems.” Int. J. Numer. Methods Eng. 108 (10): 1174–1197. https://doi.org/10.1002/nme.5250.
Seleson, P., S. Beneddine, and S. Prudhomme. 2013a. “A force-based coupling scheme for peridynamics and classical elasticity.” Comput. Mater. Sci. 66: 34–49. https://doi.org/10.1016/j.commatsci.2012.05.016.
Seleson, P., M. Gunzburger, and M. L. Parks. 2013b. “Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains.” Comput. Methods Appl. Mech. Eng. 266: 185–204. https://doi.org/10.1016/j.cma.2013.05.018.
Seleson, P., M. L. Parks, and M. Gunzburger. 2014. “Peridynamic state-based models and the embedded-atom model.” Comm. Comput. Phys. 15 (1): 179–205. https://doi.org/10.4208/cicp.081211.300413a.
Shen, B., O. Stephansson, H. H. Einstein, and B. Ghahreman. 1995. “Coalescence of fractures under shear stresses in experiments.” J. Geophys. Res. Solid Earth 100 (B4): 5975–5990. https://doi.org/10.1029/95JB00040.
Shen, F., Y. Yu, Q. Zhang, and X. Gu. 2020. “Hybrid model of peridynamics and finite element method for static elastic deformation and brittle fracture analysis.” Eng. Anal. Boundary Elem. 113: 17–25. https://doi.org/10.1016/j.enganabound.2019.12.016.
Shen, F., Q. Zhang, and D. Huang. 2013. “Damage and failure process of concrete structure under uniaxial compression based on peridynamics modeling.” Math. Prob. Eng. 2013: 5. https://doi.org/10.1155/2013/631074.
Shi, C., Y. Gong, Z. G. Yang, and Q. Tong. 2019. “Peridynamic investigation of stress corrosion cracking in carbon steel pipes.” Eng. Fract. Mech. 219: 106604. https://doi.org/10.1016/j.engfracmech.2019.106604.
Shi, G. H., and R. E. Goodman. 1989. “Generalization of two-dimensional discontinuous deformation analysis for forward modeling.” Int. J. Numer. Anal. Methods Geomech. 13 (4): 359–380. https://doi.org/10.1002/nag.1610130403.
Shojaei, A., U. Galvanetto, T. Rabczuk, A. Jenabi, and M. Zaccariotto. 2019. “A generalized finite difference method based on the Peridynamic differential operator for the solution of problems in bounded and unbounded domains.” Comput. Methods Appl. Mech. Eng. 343: 100–126. https://doi.org/10.1016/j.cma.2018.08.033.
Shojaei, A., F. Mossaiby, M. Zaccariotto, and U. Galvanetto. 2018. “An adaptive multi-grid peridynamic method for dynamic fracture analysis.” Int. J. Mech. Sci. 144: 600–617. https://doi.org/10.1016/j.ijmecsci.2018.06.020.
Shojaei, A., T. Mudric, M. Zaccariotto, and U. Galvanetto. 2016. “A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis.” Int. J. Mech. Sci. 119: 419–431. https://doi.org/10.1016/j.ijmecsci.2016.11.003.
Shojaei, A., M. Zaccariotto, and U. Galvanetto. 2017. “Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behavior.” Eng. Comput. 34 (5): 1334–1366. https://doi.org/10.1108/EC-03-2016-0078.
Silling, S. A. 2000. “Reformulation of elasticity theory for discontinuities and long-range forces.” J. Mech. Phys. Solids 48 (1): 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0.
Silling, S. A. 2010. “Linearized theory of peridynamic states.” J. Elast. 99 (1): 85–111. https://doi.org/10.1007/s10659-009-9234-0.
Silling, S. A. 2017. “Stability of peridynamic correspondence material models and their particle discretizations.” Comput. Methods Appl. Mech. Eng. 322: 42–57. https://doi.org/10.1016/j.cma.2017.03.043.
Silling, S. A., and E. Askari. 2005. “A meshfree method based on the peridynamic model of solid mechanics.” Comput. Struct. 83 (17–18): 1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026.
Silling, S. A., M. Epton, O. Weckner, J. Xu, and E. Askari. 2007. “Peridynamic states and constitutive modeling.” J. Elast. 88 (2): 151–184. https://doi.org/10.1007/s10659-007-9125-1.
Silling, S. A., and R. B. Lehoucq. 2008. “Convergence of peridynamics to classical elasticity theory.” J. Elast. 93 (1): 13–37. https://doi.org/10.1007/s10659-008-9163-3.
Silling, S. A., and E. Madenci. 2019. “The world is nonlocal.” J. Peridynamics Nonlocal Model. 1 (1): 1–2. https://doi.org/10.1007/s42102-019-00009-7.
Silling, S. A., O. Weckner, E. Askari, and F. Bobaru. 2010. “Crack nucleation in a peridynamic solid.” Int. J. Fract. 162 (1–2): 219–227. https://doi.org/10.1007/s10704-010-9447-z.
Silling, S. A., M. Zimmermann, and R. Abeyaratne. 2003. “Deformation of a peridynamic bar.” J. Elast. 73 (1–3): 173–190. https://doi.org/10.1023/B:ELAS.0000029931.03844.4f.
Song, X., and N. Khalili. 2019. “A peridynamics model for strain localization analysis of geomaterials.” Int. J. Numer. Anal. Methods Geomech. 43 (1): 77–96. https://doi.org/10.1002/nag.2854.
Song, X., and S. Menon. 2019. “Modeling of chemo-hydromechanical behavior of unsaturated porous media: A nonlocal approach based on integral equations.” Acta Geotech. 14 (3): 727–747. https://doi.org/10.1007/s11440-018-0679-9.
Song, X., and S. A. Silling. 2020. “On the peridynamic effective force state and multiphase constitutive correspondence principle.” J. Mech. Phys. Solids 145: 104161. https://doi.org/10.1016/j.jmps.2020.104161.
Song, Z., H. Konietzky, and M. Herbst. 2019. “Bonded-particle model-based simulation of artificial rock subjected to cyclic loading.” Acta Geotech. 14 (4): 955–971. https://doi.org/10.1007/s11440-018-0723-9.
Stenström, C., and K. Eriksson. 2019. “The J-contour integral in peridynamics via displacements.” Int. J. Fract. 216 (2): 173–183. https://doi.org/10.1007/s10704-019-00351-3.
Stillinger, F. H., and T. A. Weber. 1985. “Computer simulation of local order in condensed phases of silicon.” Phys. Rev. B 31 (8): 5262. https://doi.org/10.1103/PhysRevB.31.5262.
Sun, C., and Z. Huang. 2016. “Peridynamic simulation to impacting damage in composite laminate.” Compos. Struct. 138: 335–341. https://doi.org/10.1016/j.compstruct.2015.12.001.
Sun, W., and J. Fish. 2019. “Superposition-based coupling of peridynamics and finite element method.” Comput. Mech. 64 (1): 231–248. https://doi.org/10.1007/s00466-019-01668-5.
Tang, C. 1997. “Numerical simulation of progressive rock failure and associated seismicity.” Int. J. Rock Mech. Min. Sci. 34 (2): 249–261. https://doi.org/10.1016/S0148-9062(96)00039-3.
Tian, H., L. Ju, and Q. Du. 2015. “Nonlocal convection–diffusion problems and finite element approximations.” Comput. Methods Appl. Mech. Eng. 289: 60–78. https://doi.org/10.1016/j.cma.2015.02.008.
Trask, N., H. You, Y. Yu, and M. L. Parks. 2019. “An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics.” Comput. Methods Appl. Mech. Eng. 343: 151–165. https://doi.org/10.1016/j.cma.2018.08.016.
Tu, Q., and S. Li. 2017. “An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids.” J. Comput. Phys. 348: 493–513. https://doi.org/10.1016/j.jcp.2017.07.031.
Tupek, M. R., and R. Radovitzky. 2014. “An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures.” J. Mech. Phys. Solids 65: 82–92. https://doi.org/10.1016/j.jmps.2013.12.012.
Tupek, M. R., J. J. Rimoli, and R. Radovitzky. 2013. “An approach for incorporating classical continuum damage models in state-based peridynamics.” Comput. Methods Appl. Mech. Eng. 263: 20–26. https://doi.org/10.1016/j.cma.2013.04.012.
Wang, H., Y. Xu, and D. Huang. 2019a. “A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture.” Int. J. Mech. Sci. 159: 336–344. https://doi.org/10.1016/j.ijmecsci.2019.06.008.
Wang, L., and R. Abeyaratne. 2018. “A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models.” J. Mech. Phys. Solids 116: 334–349. https://doi.org/10.1016/j.jmps.2018.03.028.
Wang, L., Y. Chen, J. Xu, and J. Wang. 2017a. “Transmitting boundary conditions for 1D peridynamics.” Int. J. Numer. Methods Eng. 110 (4): 379–400. https://doi.org/10.1002/nme.5373.
Wang, L., and J. Wang. 2019. “On the invariance of governing equations of current nonlocal theories of elasticity under coordinate transformation and displacement gauge change.” J. Elast. 137 (2): 237–246. https://doi.org/10.1007/s10659-018-09715-7.
Wang, L., J. Xu, and J. Wang. 2016a. “The Green’s functions for peridynamic non-local diffusion.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 472 (2193): 20160185. https://doi.org/10.1098/rspa.2016.0185.
Wang, L., J. Xu, and J. Wang. 2017b. “Static and dynamic Green’s functions in peridynamics.” J. Elast. 126 (1): 95–125. https://doi.org/10.1007/s10659-016-9583-4.
Wang, L., J. Xu, and J. Wang. 2018a. “A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction.” Int. J. Heat Mass Transfer 118: 1284–1292. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.074.
Wang, L., J. Xu, and J. Wang. 2019b. “Elastodynamics of linearized isotropic state-based peridynamic media.” J. Elast. 137 (2): 157–176. https://doi.org/10.1007/s10659-018-09723-7.
Wang, S. Y., S. W. Sloan, D. C. Sheng, S. Q. Yang, and C. A. Tang. 2014. “Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression.” Int. J. Solids Struct. 51 (5): 1132–1148. https://doi.org/10.1016/j.ijsolstr.2013.12.012.
Wang, X., and Z. Huang. 2019. “A possible reason about origin of singularity and anomalous dispersion in peridynamics.” Comput. Model. Eng. Sci. 121 (2): 385–398. https://doi.org/10.32604/cmes.2019.06936.
Wang, X., S. S. Kulkarni, and A. Tabarraei. 2019c. “Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems.” Comput. Methods Appl. Mech. Eng. 344: 251–275. https://doi.org/10.1016/j.cma.2018.09.019.
Wang, Y., and X. Zhou. 2019. “Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes.” Int. J. Rock Mech. Min. Sci. 117: 31–48. https://doi.org/10.1016/j.ijrmms.2019.03.007.
Wang, Y., X. Zhou, and M. Kou. 2018b. “Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles.” Ceram. Int. 44 (10): 11512–11542. https://doi.org/10.1016/j.ceramint.2018.03.214.
Wang, Y., X. Zhou, and M. Kou. 2019d. “Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads.” Acta Geotech. 14 (4): 1161–1193. https://doi.org/10.1007/s11440-018-0709-7.
Wang, Y., X. Zhou, and M. Kou. 2019e. “An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks” Eur. J. Mech. A. Solids 73: 282–305. https://doi.org/10.1016/j.euromechsol.2018.09.007.
Wang, Y., X. Zhou, and Y. Shou. 2017c. “The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics.” Int. J. Mech. Sci. 128: 614–643. https://doi.org/10.1016/j.ijmecsci.2017.05.019.
Wang, Y., X. Zhou, Y. Wang, and Y. Shou. 2018c. “A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids.” Int. J. Solids Struct. 134: 89–115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.
Wang, Y., X. Zhou, and X. Xu. 2016b. “Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics.” Eng. Fract. Mech. 163: 248–273. https://doi.org/10.1016/j.engfracmech.2016.06.013.
Wang, Y., X. Zhou, and T. Zhang. 2019f. “Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach.” Mech. Mater. 137: 103133. https://doi.org/10.1016/j.mechmat.2019.103133.
Warren, T. L., S. A. Silling, A. Askari, O. Weckner, M. A. Epton, and J. Xu. 2009. “A non-ordinary state-based peridynamic method to model solid material deformation and fracture.” Int. J. Solids Struct. 46 (5): 1186–1195. https://doi.org/10.1016/j.ijsolstr.2008.10.029.
Weckner, O., and R. Abeyaratne. 2005. “The effect of long-range forces on the dynamics of a bar.” J. Mech. Phys. Solids 53 (3): 705–728. https://doi.org/10.1016/j.jmps.2004.08.006.
Weckner, O., G. Brunk, M. A. Epton, S. A. Silling, and E. Askari. 2009. “Green’s functions in non-local three-dimensional linear elasticity.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 465 (2111): 3463–3487. https://doi.org/10.1098/rspa.2009.0234.
Wells, G. N., and L. J. Sluys. 2001. “A new method for modelling cohesive cracks using finite elements.” Int. J. Numer. Methods Eng. 50 (12): 2667–2682. https://doi.org/10.1002/nme.143.
Wong, L. N. Y., and H. H. Einstein. 2009. “Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression.” Int. J. Rock Mech. Min. Sci. 46 (2): 239–249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
Wong, R. H., and K. T. Chau. 1998. “Crack coalescence in a rock-like material containing two cracks.” Int. J. Rock Mech. Min. Sci. 35 (2): 147–164. https://doi.org/10.1016/S0148-9062(97)00303-3.
Wu, C. T., and B. Ren. 2015. “A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process.” Comput. Methods Appl. Mech. Eng. 291: 197–215. https://doi.org/10.1016/j.cma.2015.03.003.
Wu, L., D. Huang, Y. Xu, and L. Wang. 2019. “A non-ordinary state-based peridynamic formulation for failure of concrete subjected to impacting loads.” Comput. Model. Eng. Sci. 118 (3): 561–581. https://doi.org/10.31614/cmes.2019.04347.
Wu, L., D. Huang, Y. Xu, and L. Wang. 2020a. “A rate-dependent dynamic damage model in peridynamics for concrete under impact loading.” Int. J. Damage Mech. https://doi.org/10.1177/1056789519901162.
Wu, L., L. Wang, D. Huang, and Y. Xu. 2020b. “An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact.” Compos. Struct. 234: 111722. https://doi.org/10.1016/j.compstruct.2019.111722.
Xue, T., X. Zhang, and K. K. Tamma. 2018. “A two-field state-based peridynamic theory for thermal contact problems.” J. Comput. Phys. 374: 1180–1195. https://doi.org/10.1016/j.jcp.2018.08.014.
Yaghoobi, A., and M. G. Chorzepa. 2017. “Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics.” Comput. Struct. 188: 63–79. https://doi.org/10.1016/j.compstruc.2017.03.019.
Yaghoobi, A., and M. G. Chorzepa. 2018. “Formulation of symmetry boundary modeling in non-ordinary state-based peridynamics and coupling with finite element analysis.” Math. Mech. Solids 23 (8): 1156–1176. https://doi.org/10.1177/1081286517711495.
Yang, D., X. He, S. Yi, and X. Liu. 2019a. “An improved ordinary state-based peridynamic model for cohesive crack growth in quasi-brittle materials.” Int. J. Mech. Sci. 153: 402–415. https://doi.org/10.1016/j.ijmecsci.2019.02.019.
Yang, S. Q., and H. W. Jing. 2011. “Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression.” Int. J. Fract. 168 (2): 227–250. https://doi.org/10.1007/s10704-010-9576-4.
Yang, S. Q., D. S. Yang, H. W. Jing, Y. H. Li, and S. Y. Wang. 2012. “An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures.” Rock Mech. Rock Eng. 45 (4): 563–582. https://doi.org/10.1007/s00603-011-0206-x.
Yang, Z., E. Oterkus, C. T. Nguyen, and S. Oterkus. 2019b. “Implementation of peridynamic beam and plate formulations in finite element framework.” Continuum Mech. Thermodyn. 31 (1): 301–315. https://doi.org/10.1007/s00161-018-0684-0.
Yu, Y., F. F. Bargos, H. You, M. L. Parks, M. L. Bittencourt, and G. E. Karniadakis. 2018. “A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations.” Comput. Methods Appl. Mech. Eng. 340: 905–931. https://doi.org/10.1016/j.cma.2018.06.008.
Yu, Y., and H. Wang. 2014. “Peridynamic analytical method for progressive damage in notched composite laminates.” Compos. Struct. 108: 287–294. https://doi.org/10.1016/j.compstruct.2013.09.039.
Zaccariotto, M., T. Mudric, D. Tomasi, A. Shojaei, and U. Galvanetto. 2018. “Coupling of FEM meshes with Peridynamic grids.” Comput. Methods Appl. Mech. Eng. 330: 471–497. https://doi.org/10.1016/j.cma.2017.11.011.
Zhang, H., H. Li, H. Ye, and Y. Zheng. 2019a. “A coupling peridynamic approach for the consolidation and dynamic analysis of saturated porous media.” Comput. Mech. 64 (4): 1097–1113. https://doi.org/10.1007/s00466-019-01695-2.
Zhang, H., and P. Qiao. 2018a. “An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading.” Eng. Fract. Mech. 189: 81–97. https://doi.org/10.1016/j.engfracmech.2017.09.023.
Zhang, H., P. Qiao, and L. Lu. 2019b. “Failure analysis of plates with singular and non-singular stress raisers by a coupled peridynamic model.” Int. J. Mech. Sci. 157: 446–456. https://doi.org/10.1016/j.ijmecsci.2019.04.044.
Zhang, J. Z., and X. P. Zhou. 2020. “AE event rate characteristics of flawed granite: From damage stress to ultimate failure.” Geophys. J. Int. 222: 795–814. https://doi.org/10.1093/gji/ggaa207.
Zhang, T., and X. Zhou. 2019. “A modified axisymmetric ordinary state-based peridynamics with shear deformation for elastic and fracture problems in brittle solids.” Eur. J. Mech. A. Solids 77: 103810. https://doi.org/10.1016/j.euromechsol.2019.103810.
Zhang, Y., H. Deng, J. Deng, C. Liu, and B. Ke. 2019c. “Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading.” Int. J. Rock Mech. Min. Sci. 123: 104093. https://doi.org/10.1016/j.ijrmms.2019.104093.
Zhang, Y., D. Huang, Z. Cai, and Y. Xu. 2020. “An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing.” Eng. Fract. Mech. 234: 107086. https://doi.org/10.1016/j.engfracmech.2020.107086.
Zhang, Y., and P. Qiao. 2018b. “An axisymmetric ordinary state-based peridynamic model for linear elastic solids.” Comput. Methods Appl. Mech. Eng. 341: 517–550. https://doi.org/10.1016/j.cma.2018.07.009.
Zhang, Y., and P. Qiao. 2019a. “A new bond failure criterion for ordinary state-based peridynamic mode II fracture analysis.” Int. J. Fract. 215 (1–2): 105–128. https://doi.org/10.1007/s10704-018-00341-x.
Zhang, Y., and P. Qiao. 2019b. “Peridynamic simulation of two-dimensional axisymmetric pull-out tests.” Int. J. Solids Struct. 168: 41–57. https://doi.org/10.1016/j.ijsolstr.2019.03.014.
Zhang, Z., and Y. Chen. 2014. “Modeling nonlinear elastic solid with correlated lattice bond cell for dynamic fracture simulation.” Comput. Methods Appl. Mech. Eng. 279: 325–347. https://doi.org/10.1016/j.cma.2014.06.036.
Zhang, Z. N., and X. R. Ge. 2005. “Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress.” Theor. Appl. Fract. Mech. 43 (3): 342–359. https://doi.org/10.1016/j.tafmec.2005.03.005.
Zhao, G. F. 2015. “Modelling 3D jointed rock masses using a lattice spring model.” Int. J. Rock Mech. Min. Sci. 78: 79–90. https://doi.org/10.1016/j.ijrmms.2015.05.011.
Zhao, J., Z. Chen, J. Mehrmashhadi, and F. Bobaru. 2018. “Construction of a peridynamic model for transient advection-diffusion problems.” Int. J. Heat Mass Transfer 126: 1253–1266. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.075.
Zhao, J., Q. Zhang, D. Huang, and F. Shen. 2016. “A peridynamic approach for the simulation of calcium silicate hydrate nanoindentation.” Adv. Cem. Res. 28 (2): 84–91. https://doi.org/10.1680/adcr.15.00018.
Zheng, G., G. Shen, Y. Xia, and P. Hu. 2020. “A bond-based peridynamic model considering effects of particle rotation and shear influence coefficient.” Int. J. Numer. Methods Eng. 121 (1): 93–109. https://doi.org/10.1002/nme.6189.
Zhou, S., X. Zhuang, and T. Rabczuk. 2018a. “A phase-field modeling approach of fracture propagation in poroelastic media.” Eng. Geol. 240: 189–203. https://doi.org/10.1016/j.enggeo.2018.04.008.
Zhou, X. P., J. Bi, and Q. H. Qian. 2015. “Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws.” Rock Mech. Rock Eng. 48 (3): 1097–1114. https://doi.org/10.1007/s00603-014-0627-4.
Zhou, X. P., and H. Cheng. 2017. “Multidimensional space method for geometrically nonlinear problems under total Lagrangian formulation based on the extended finite-element method.” J. Eng. Mech. 143 (7): 04017036. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001241.
Zhou, X. P., H. Cheng, and Y. F. Feng. 2014. “An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression.” Rock Mech. Rock Eng. 47 (6): 1961–1986. https://doi.org/10.1007/s00603-013-0511-7.
Zhou, X. P., and Y. D. Shou. 2017. “Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method.” Int. J. Geomech. 17 (3): 04016086. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000778.
Zhou, X. P., and Y. T. Wang. 2016. “Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics.” Int. J. Rock Mech. Min. Sci. 89: 235–249. https://doi.org/10.1016/j.ijrmms.2016.09.010.
Zhou, X. P., Y. T. Wang, and Q. H. Qian. 2016a. “Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics.” Eur. J. Mech. A. Solids 60: 277–299. https://doi.org/10.1016/j.euromechsol.2016.08.009.
Zhou, X. P., Y. T. Wang, and Y. D. Shou. 2020a. “Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks.” Int. J. Rock Mech. Min. Sci. 132: 104383. https://doi.org/10.1016/j.ijrmms.2020.104383.
Zhou, X. P., Y. T. Wang, Y. D. Shou, and M. Kou. 2018b. “A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads.” Eng. Fract. Mech. 188: 151–183. https://doi.org/10.1016/j.engfracmech.2017.07.031.
Zhou, X. P., Y. T. Wang, and X. Xu. 2016b. “Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics.” Int. J. Fract. 201 (2): 213–234. https://doi.org/10.1007/s10704-016-0126-6.
Zhou, X. P., Y. T. Wang, J. Z. Zhang, and F. N. Liu. 2019a. “Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: Sensitivity to brittleness.” Rock Mech. Rock Eng. 52 (3): 691–718. https://doi.org/10.1007/s00603-018-1600-4.
Zhou, X. P., and H. Q. Yang. 2012. “Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses.” Int. J. Rock Mech. Min. Sci. 55: 15–27. https://doi.org/10.1016/j.ijrmms.2012.06.001.
Zhou, X. P., J. Z. Zhang, and F. Berto. 2020b. “Fracture analysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio.” J. Mater. Civ. Eng. 32 (5): 04020085. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003151.
Zhou, X. P., J. Z. Zhang, Q. H. Qian, and Y. Niu. 2019b. “Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques.” J. Struct. Geol. 126: 129–145. https://doi.org/10.1016/j.jsg.2019.06.003.
Zhou, X. P., J. Z. Zhang, and L. N. Y. Wong. 2018c. “Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression.” Rock Mech. Rock Eng. 51 (5): 1379–1400. https://doi.org/10.1007/s00603-018-1406-4.
Zhou, X. P., J. Z. Zhang, L. H. Yang, and Y. L. Cui. 2018d. “Internal morphology of cracking of two 3-D pre-existing cross-embedded flaws under uniaxial compression.” Geotech. Test. J. 41 (2): 20170189. https://doi.org/10.1520/GTJ20170189.
Zhu, F., and J. Zhao. 2019. “A peridynamic investigation on crushing of sand particles.” Géotechnique 69 (6): 526–540. https://doi.org/10.1680/jgeot.17.P.274.
Zhu, Q. Z., and T. Ni. 2017. “Peridynamic formulations enriched with bond rotation effects.” Int. J. Eng. Sci. 121: 118–129. https://doi.org/10.1016/j.ijengsci.2017.09.004.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 147Issue 1January 2021

History

Published online: Oct 31, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 31, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Xiao-Ping Zhou [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, People’s Republic of China (corresponding author). Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, People’s Republic of China; presently, Post-doctoral Fellow, King Abdullah Univ. of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ORCID: https://orcid.org/0000-0003-3309-0447. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share