Technical Papers
Feb 26, 2020

Effective Anisotropic Elastic and Plastic Yield Properties of Periodic Foams Derived from Triply Periodic Schoen’s I-WP Minimal Surface

Publication: Journal of Engineering Mechanics
Volume 146, Issue 5

Abstract

Recently, there has been a growing interest in studying cellular materials made of unit cells that take the topology of the mathematically known triply periodic minimal surfaces (TPMS). Architected foams based on the shell-based Schoen’s I-graph–wrapped package (I-WP) TPMS (i.e., IWP-foam) seems a promising mechanical metamaterial and might yield better mechanical properties than stochastic or strut-based foams. The IWP-foam has a cubic symmetry and is interconnected and intertwined in the three-dimensional (3D) space. Changing the thickness of the I-WP minimal surface can change the relative density of the IWP-foam. In this paper, the elastic properties (uniaxial, shear and bulk moduli, and Poisson’s ratio), elastic anisotropy, plastic properties (tensile, shear, and hydrostatic yield strengths), and anisotropic yield surfaces under different load combinations of IWP-foam, as a function of the relative density, are computed through conducting microscopic finite-element simulations. The anisotropic elastic and plastic properties of IWP-foam are compared with that of other common types of periodic cellular solids. Furthermore, computationally inexpensive closed-form macroscopic isotropic and anisotropic yield functions are used to predict the microscopic yield behavior of IWP-foam. It is found that the uniaxial elastic modulus and yield strength, as well as the shear elastic modulus and shear yield strength, scale with the Gibson-Ashby power-law, indicating a mixed stretching-dominated and bending-dominated deformation behavior. On the other hand, the bulk modulus and hydrostatic yield strength scale linearly with relative density, indicating a stretching-dominated behavior. It is shown that a modified version of Hill’s anisotropic yield function can better describe the macroscopic yield behavior of the IWP-foam under several different stress states than the isotropic Deshpande-Fleck model, especially for combinations of shear stress states. Finally, it is noticed from comparing the elastic and plasticity yield properties of the IWP-foam with several other common foams and lattices that, for a given relative density, the IWP-foam has the highest uniaxial stiffness and strength.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article.

Acknowledgments

This publication is based upon work supported by Khalifa University under Award No. RC2-2019-003.

References

Abu Al-Rub, R. K., D. W. Abueidda, and A. S. Dalaq. 2015. “Thermo-electro-mechanical properties of interpenetrating phase composites with periodic architectured reinforcements.” In From creep damage mechanics to homogenization methods, 1–18. Berlin, Germany: Springer.
Abueidda, D. W., R. K. Abu Al-Rub, A. S. Dalaq, D.-W. Lee, K. A. Khan, and I. Jasiuk. 2016. “Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces.” Mech. Mater. 95 (Apr): 102–115. https://doi.org/10.1016/j.mechmat.2016.01.004.
Abueidda, D. W., M. Bakir, R. K. Abu Al-Rub, J. S. Bergström, N. A. Sobh, and I. Jasiuk. 2017. “Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures.” Mater. Des. 122 (May): 255–267. https://doi.org/10.1016/j.matdes.2017.03.018.
Abueidda, D. W., A. S. Dalaq, R. K. Abu Al-Rub, and I. Jasiuk. 2015a. “Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites.” Compos. Struct. 133 (Dec): 85–97. https://doi.org/10.1016/j.compstruct.2015.06.082.
Abueidda, D. W., A. S. Dalaq, R. K. Abu Al-Rub, and H. A. Younes. 2015b. “Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements.” Int. J. Mech. Sci. 92 (Mar): 80–89. https://doi.org/10.1016/j.ijmecsci.2014.12.004.
Ahmadi, S. M., S. A. Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, and A. A. Zadpoor. 2015. “Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties.” Materials 8 (4): 1871–1896. https://doi.org/10.3390/ma8041871.
Al-Ketan, O., and R. K. Abu Al-Rub. 2019. “Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices.” Adv. Eng. Mater. 21 (10): 1900524. https://doi.org/10.1002/adem.201900524.
Al-Ketan, O., R. K. Abu Al-Rub, and R. Rowshan. 2017a. “Mechanical properties of a new type of architected interpenetrating phase composite materials.” Adv. Mater. Technol. 2 (2): 1600235. https://doi.org/10.1002/admt.201600235.
Al-Ketan, O., R. K. Abu Al-Rub, and R. Rowshan. 2018a. “The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface.” J. Mater. Res. 33 (3): 343–359. https://doi.org/10.1557/jmr.2018.1.
Al-Ketan, O., M. A. Assad, and R. K. Abu Al-Rub. 2017b. “Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures.” Compos. Struct. 176 (Sep): 9–19. https://doi.org/10.1016/j.compstruct.2017.05.026.
Al-Ketan, O., R. Rowshan, and R. K. Abu Al-Rub. 2018b. “Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials.” Addit. Manuf. 19 (Jan): 167–183. https://doi.org/10.1016/j.addma.2017.12.006.
Al-Ketan, O., R. Rowshan, A. Palazotto, and R. K. Abu Al-Rub. 2019. “On mechanical properties of cellular steel solids with shell-like periodic architectures fabricated by selective laser sintering.” J. Eng. Mater. Technol. 141 (2): 021009. https://doi.org/10.1115/1.4041874.
Almeida, H. A., and P. J. Bártolo. 2014. “Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation.” Med. Eng. Phys. 36 (8): 1033–1040. https://doi.org/10.1016/j.medengphy.2014.05.006.
Bauer, J., L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit. 2017. “Nanolattices: An emerging class of mechanical metamaterials.” Adv. Mater. 29 (40): 1701850. https://doi.org/10.1002/adma.201701850.
Bauer, J., A. Schroer, R. Schwaiger, and O. Kraft. 2016. “The impact of size and loading direction on the strength of architected lattice materials.” Adv. Eng. Mater. 18 (9): 1537–1543. https://doi.org/10.1002/adem.201600235.
Bauer, J., A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, and O. Kraft. 2015. “Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing.” Extreme Mech. Lett. 3 (Jun): 105–112. https://doi.org/10.1016/j.eml.2015.03.006.
Berger, J., H. Wadley, and R. McMeeking. 2017. “Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.” Nature 543 (7646): 533–537. https://doi.org/10.1038/nature21075.
Bobbert, F., K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor. 2017. “Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.” Acta Biomater. 53 (Apr): 572–584. https://doi.org/10.1016/j.actbio.2017.02.024.
Bonatti, C., and D. Mohr. 2017. “Large deformation response of additively-manufactured FCC metamaterials: From octet truss lattices towards continuous shell mesostructures.” Int. J. Plast. 92 (May): 122–147. https://doi.org/10.1016/j.ijplas.2017.02.003.
Bonatti, C., and D. Mohr. 2019. “Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption.” Acta Mater. 164 (Feb): 301–321. https://doi.org/10.1016/j.actamat.2018.10.034.
Brandt, M. 2016. Laser additive manufacturing: Materials, design, technologies, and applications. Sawston, UK: Woodhead Publishing.
Brenne, F., T. Niendorf, and H. Maier. 2013. “Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load.” J. Mater. Process. Technol. 213 (9): 1558–1564. https://doi.org/10.1016/j.jmatprotec.2013.03.013.
Chernow, V., H. Alaeian, J. Dionne, and J. Greer. 2015. “Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared.” Appl. Phys. Lett. 107 (10): 101905. https://doi.org/10.1063/1.4930819.
Cho, H.-H., Y. Cho, and H. N. Han. 2015. “Finite element analysis for mechanical response of Ti foams with regular structure obtained by selective laser melting.” Acta Mater. 97 (Sep): 199–206. https://doi.org/10.1016/j.actamat.2015.07.003.
COMSOL Multiphysics. 2012. COMSOL multiphysics user guide (version 4.3 a). Burlington, MA: COMSOL, AB.
Dalaq, A. S., D. W. Abueidda, and R. K. Abu Al-Rub. 2016a. “Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements.” Composites Part A. 84 (May): 266–280. https://doi.org/10.1016/j.compositesa.2016.02.009.
Dalaq, A. S., D. W. Abueidda, R. K. Abu Al-Rub, and I. Jasiuk. 2016b. “Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements.” Int. J. Solids Struct. 83 (Apr): 169–182. https://doi.org/10.1016/j.ijsolstr.2016.01.011.
Deshpande, V., and N. Fleck. 2000. “Isotropic constitutive models for metallic foams.” J. Mech. Phys. Solids. 48 (6–7): 1253–1283. https://doi.org/10.1016/S0022-5096(99)00082-4.
Deshpande, V. S., N. A. Fleck, and M. F. Ashby. 2001. “Effective properties of the octet-truss lattice material.” J. Mech. Phys. Solids. 49 (8): 1747–1769. https://doi.org/10.1016/S0022-5096(01)00010-2.
Fleck, N., V. Deshpande, and M. Ashby. 2010. “Micro-architectured materials: Past, present and future.” Proc. R. Soc. A. 466 (2121): 2495–2516. https://doi.org/10.1098/rspa.2010.0215.
Frenzel, T., M. Kadic, and M. Wegener. 2017. “Three-dimensional mechanical metamaterials with a twist.” Science 358 (6366): 1072–1074. https://doi.org/10.1126/science.aao4640.
Gibson, L. J., and M. F. Ashby. 2009. Cellular solids: Structure and properties. 1997. Cambridge, UK: Cambridge University Press.
Gu, X. W., and J. R. Greer. 2015. “Ultra-strong architected Cu meso-lattices.” Extreme Mech. Lett. 2 (Mar): 7–14. https://doi.org/10.1016/j.eml.2015.01.006.
Han, S. C., J. W. Lee, and K. Kang. 2015. “A new type of low density material: Shellular.” Adv. Mater. 27 (37): 5506–5511. https://doi.org/10.1002/adma.201501546.
Hibbit, H., B. Karlsson, and E. Sorensen. 2012. ABAQUS user manual, version 6.12. Providence, RI: Simulia.
Hill, R. 1948. “A theory of the yielding and plastic Qow of anisotropic metals.” Proc. R. Soc. A. 193 (1033): 281–297. https://doi.org/10.1098/rspa.1948.0045.
Jiang, M., I. Jasiuk, and M. Ostoja-Starzewski. 2002. “Apparent elastic and elastoplastic behavior of periodic composites.” Int. J. Solids Struct. 39 (1): 199–212. https://doi.org/10.1016/S0020-7683(01)00145-7.
Kadkhodapour, J., H. Montazerian, A. C. Darabi, A. Anaraki, S. Ahmadi, A. Zadpoor, and S. Schmauder. 2015. “Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.” J. Mech. Behav. Biomed. Mater. 50 (Oct): 180–191. https://doi.org/10.1016/j.jmbbm.2015.06.012.
Kadkhodapour, J., H. Montazerian, A. C. Darabi, A. Zargarian, and S. Schmauder. 2017 “The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.” J. Mech. Behav. Biomed. Mater. 70 (Jun): 28–42. https://doi.org/10.1016/j.jmbbm.2016.09.018.
Kapfer, S. C., S. T. Hyde, K. Mecke, C. H. Arns, and G. E. Schröder-Turk. 2011. “Minimal surface scaffold designs for tissue engineering.” Biomaterials 32 (29): 6875–6882. https://doi.org/10.1016/j.biomaterials.2011.06.012.
Karcher, H., and K. Polthier. 1996. “Construction of triply periodic minimal surfaces.” Philos. Trans. R. Soc. London, Ser. A. 354 (1715): 2077–2104.
Khaderi, S., V. Deshpande, and N. Fleck. 2014. “The stiffness and strength of the gyroid lattice.” Int. J. Solids Struct. 51 (23–24): 3866–3877. https://doi.org/10.1016/j.ijsolstr.2014.06.024.
Khan, K. A., and R. K. Abu Al-Rub. 2017. “Time dependent response of architectured Neovius foams.” Int. J. Mech. Sci. 126 (Jun): 106–119. https://doi.org/10.1016/j.ijmecsci.2017.03.017.
Khan, K. A., and R. K. Abu Al-Rub. 2018. “Modeling time and frequency domain viscoelastic behavior of architectured foams.” J. Eng. Mech. 144 (6): 04018029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001448.
Kruth, J.-P., M.-C. Leu, and T. Nakagawa. 1998. “Progress in additive manufacturing and rapid prototyping.” CIRP Ann. 47 (2): 525–540. https://doi.org/10.1016/S0007-8506(07)63240-5.
Lee, D.-W., K. A. Khan, and R. K. Abu Al-Rub. 2017. “Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface.” Int. J. Plast. 95 (Aug): 1–20. https://doi.org/10.1016/j.ijplas.2017.03.005.
Lee, M. G., J. W. Lee, S. C. Han, and K. Kang. 2016. “Mechanical analyses of ‘Shellular’, an ultralow-density material.” Acta Mater. 103 (Jan): 595–607. https://doi.org/10.1016/j.actamat.2015.10.040.
Lidin, S., S. T. Hyde, and B. W. Ninham. 1990. “Exact construction of periodic minimal surfaces: The I-WP surface and its isometries.” J. Phys. 51 (9): 801–813. https://doi.org/10.1051/jphys:01990005109080100.
Lord, E. A., and A. L. Mackay. 2003. “Periodic minimal surfaces of cubic symmetry.” Curr. Sci. 85 (3): 346–362.
Maskery, I., N. T. Aboulkhair, A. Aremu, C. Tuck, and I. Ashcroft. 2017. “Compressive failure modes and energy absorption in additively manufactured double gyroid lattices.” Addit. Manuf. 16: (Aug) 24–29. https://doi.org/10.1016/j.addma.2017.04.003.
Meza, L. R., S. Das, and J. R. Greer. 2014. “Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.” Science 345 (6202): 1322–1326. https://doi.org/10.1126/science.1255908.
Nguyen, B. D., J. S. Cho, and K. Kang. 2016. “Optimal design of ‘Shellular’, a micro-architectured material with ultralow density.” Mater. Des. 95 (Apr): 490–500. https://doi.org/10.1016/j.matdes.2016.01.126.
Nguyen, B. D., S. C. Han, Y. C. Jung, and K. Kang. 2017. “Design of the P-surfaced shellular, an ultra-low density material with micro-architecture.” Comput. Mater. Sci. 139 (Nov): 162–178. https://doi.org/10.1016/j.commatsci.2017.07.025.
Ranganathan, S. I., and M. Ostoja-Starzewski. 2008. “Universal elastic anisotropy index.” Phys. Rev. Lett. 101 (5): 055504. https://doi.org/10.1103/PhysRevLett.101.055504.
Schaedler, T. A., A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter. 2011. “Ultralight metallic microlattices.” Science. 334 (6058): 962–965. https://doi.org/10.1126/science.1211649.
Schoen, A. H. 1970. Infinite periodic minimal surfaces without self-intersections. Washington, DC: NASA.
Smith, J., W. Xiong, W. Yan, S. Lin, P. Cheng, O. L. Kafka, G. J. Wagner, J. Cao, and W. K. Liu. 2016. “Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support.” Comput. Mech. 57 (4): 583–610. https://doi.org/10.1007/s00466-015-1240-4.
Sreedhar, N., N. Thomas, O. Al-Ketan, R. Rowshan, H. Hernandez, R. K. Abu Al-Rub, and H. A. Arafat. 2018. “3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF.” Desalination 425 (Jan): 12–21. https://doi.org/10.1016/j.desal.2017.10.010.
Torquato, S., and A. Donev. 2004. “Minimal surfaces and multifunctionality.” Proc. R. Soc. London, Ser. A 460 (2047): 1849–1856. https://doi.org/10.1098/rspa.2003.1269.
Torquato, S., S. Hyun, and A. Donev. 2002. “Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity.” Phys. Rev. Lett. 89 (26): 266601. https://doi.org/10.1103/PhysRevLett.89.266601.
Valdevit, L., A. J. Jacobsen, J. R. Greer, and W. B. Carter. 2011. “Protocols for the optimal design of multi-functional cellular structures: From hypersonics to micro-architected materials.” Supplement, J. Am. Ceram. Soc. 94 (S1): 15–34. https://doi.org/10.1111/j.1551-2916.2011.04599.x.
Wang, X., S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie. 2016. “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.” Biomaterials 83 (Mar): 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012.
Wauthle, R., B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.-P. Kruth, and J. Van Humbeeck. 2015. “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures.” Addit. Manuf. 5 (Jan): 77–84. https://doi.org/10.1016/j.addma.2014.12.008.
Wohlers, T. 2015. 3D printing and additive manufacturing state of the industry. Fort Collins, CO: Wohlers Associates.
Xia, Z., Y. Zhang, and F. Ellyin. 2003. “A unified periodical boundary conditions for representative volume elements of composites and applications.” Int. J. Solids Struct. 40 (8): 1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6.
Xia, Z., C. Zhou, Q. Yong, and X. Wang. 2006. “On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites.” Int. J. Solids Struct. 43 (2): 266–278. https://doi.org/10.1016/j.ijsolstr.2005.03.055.
Yeo, S. J., M. J. Oh, and P. J. Yoo. 2019. “Structurally controlled cellular architectures for high-performance ultra-lightweight materials.” Adv. Mater. 31 (34): 1803670. https://doi.org/10.1002/adma.201803670.
Zener, C. M., and S. Siegel. 1949. “Elasticity and anelasticity of metals.” J. Phys. Chem. 53 (9): 1468. https://doi.org/10.1021/j150474a017.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 146Issue 5May 2020

History

Received: Feb 12, 2019
Accepted: Nov 12, 2019
Published online: Feb 26, 2020
Published in print: May 1, 2020
Discussion open until: Jul 26, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Advanced Digital and Additive Manufacturing Center, Khalifa Univ., Abu Dhabi, United Arab Emirates; Director, Dept. of Mechanical Engineering, Masdar Institute, Khalifa Univ. of Science and Technology, Abu Dhabi, United Arab Emirates; Dept. of Aerospace Engineering, Khalifa Univ. of Science and Technology, Abu Dhabi, United Arab Emirates (corresponding author). ORCID: https://orcid.org/0000-0003-1255-6949. Email: [email protected]; [email protected]
Dong-Wook Lee [email protected]
Research Scientist, Advanced Digital and Additive Manufacturing Center, Khalifa Univ., Abu Dhabi, United Arab Emirates; Dept. of Mechanical Engineering, Masdar Institute, Khalifa Univ. of Science and Technology, Abu Dhabi, United Arab Emirates. Email: [email protected]
Kamran A. Khan [email protected]
Assistant Professor, Advanced Digital and Additive Manufacturing Center, Khalifa Univ., Abu Dhabi, United Arab Emirates; Dept. of Aerospace Engineering, Khalifa Univ. of Science and Technology, Abu Dhabi, United Arab Emirates. Email: [email protected]
Professor, Dept. of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433-7765. ORCID: https://orcid.org/0000-0003-0904-4619. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share