Technical Papers
Sep 28, 2019

Piezoelectric Metamaterial with Negative and Zero Poisson’s Ratios

Publication: Journal of Engineering Mechanics
Volume 145, Issue 12

Abstract

This study presents the finite element–based micromechanical modeling approach to obtain the electromechanical properties of the piezoelectric metamaterial based on honeycomb (HC) cellular networks. The symmetry of the periodic structure was employed to derive mixed boundary conditions (MBCs) analogous to periodic boundary conditions (PBCs). Three classes of hexagonal HC cellular networks, namely, a conventional HC (CHC), a re-entrant HC (RE), and a semi-re-entrant HC (SRE) were considered. The representative volume elements (RVEs) of these three classes of cellular materials were created, and finite element analyses were carried out to analyze the effect of orientation of the ligament on their effective electromechanical properties and their suitability in specific engineering applications. The longitudinally poled piezoelectric HC cellular networks showed an enhanced behavior as compared to the monolithic piezoelectric materials. Moreover, longitudinally poled HC cellular networks demonstrated that, as compared to the bulk constituent, their hydrostatic figure of merit increased and their acoustic impedance decreased by one order of magnitude, respectively, indicating their applicability for the design on hydrophones. Moreover, results showed that cellular metamaterial with tunable electromechanical characteristics and a variety of auxetic behaviors such as negative, positive, or zero Poisson’s ratios could be developed. Such novel HC network-based functional cellular materials are likely to facilitate the design of light-weight devices for various next-generation sensors and actuators.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank undergraduate students Abdelrahman Alhammadi, Ali Alneyadi, and Saeed Alqaydi from Khalifa University of Science and Technology for generating CAD files of the HC cellular networks.

References

Abueidda, D. W., A. S. Dalaq, R. K. Abu Al-Rub, and H. A. Younes. 2015. “Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements.” Int. J. Mech. Sci. 92 (Mar): 80–89. https://doi.org/10.1016/j.ijmecsci.2014.12.004.
Alkhader, M., S. Iyer, W. Shi, and T. A. Venkatesh. 2015. “Low frequency acoustic characteristics of periodic honeycomb cellular cores: The effect of relative density and strain fields.” Compos. Struct. 133 (Dec): 77–84. https://doi.org/10.1016/j.compstruct.2015.07.102.
Alkhader, M., and M. Vural. 2009. “The partition of elastic strain energy in solid foams and lattice structures.” Acta Mater. 57 (8): 2429–2439. https://doi.org/10.1016/j.actamat.2009.01.034.
Banno, H. 1985. “Theoretical equations for dielectric and piezoelectric properties of ferroelectric composites based on modified cubes model.” Supplement, Jpn. J. Appl. Phys. 24 (S2): 445. https://doi.org/10.7567/JJAPS.24S2.445.
Bast, U., and W. Wersing. 1989. “The influence of internal voids with 3-1 connectivity on the properties of piezoelectric ceramics prepared by a new planar process.” Ferroelectrics 94 (1): 229–242. https://doi.org/10.1080/00150198908014258.
Bauer, J., S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft. 2014. “High-strength cellular ceramic composites with 3D microarchitecture.” Proc. Natl. Acad. Sci. U.S.A. 111 (7): 2453–2458. https://doi.org/10.1073/pnas.1315147111.
Bendsøe, M. P., and N. Kikuchi. 1988. “Generating optimal topologies in structural design using a homogenization method.” Comput. Methods Appl. Mech. Eng. 71 (2): 197–224. https://doi.org/10.1016/0045-7825(88)90086-2.
Bosse, P. W., K. S. Challagulla, and T. A. Venkatesh. 2012. “Effects of foam shape and porosity aspect ratio on the electromechanical properties of 3-3 piezoelectric foams.” Acta Mater. 60 (19): 6464–6475. https://doi.org/10.1016/j.actamat.2012.07.051.
Bowen, C. R., A. Perry, A. C. F. Lewis, and H. Kara. 2004. “Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit.” J. Eur. Ceram. Soc. 24 (2): 541–545. https://doi.org/10.1016/S0955-2219(03)00194-8.
Bowen, C. R., and V. Y. Topolov. 2003. “Piezoelectric sensitivity of PbTiO 3-based ceramic/polymer composites with 0-3 and 3-3 connectivity.” Acta Mater. 51 (17): 4965–4976. https://doi.org/10.1016/S1359-6454(03)00283-0.
Challagulla, K. S., and T. A. Venkatesh. 2012. “Electromechanical response of piezoelectric foams.” Acta Mater. 60 (5): 2111–2127. https://doi.org/10.1016/j.actamat.2011.12.036.
Challagulla, K. S., and T. A. Venkatesh. 2013. “Computational modeling of piezoelectric foams.” JOM 65 (2): 256–266. https://doi.org/10.1007/s11837-012-0515-x.
Choudhry, R. S., K. A. Khan, S. Z. Khan, M. A. Khan, and A. Hasan. 2016. “Micromechanical modeling of 8-harness satin weave glass fiber reinforced composites.” J. Compos. Mater. 51 (5): 705–720. https://doi.org/10.1177/0021998316649782.
Dell’Isola, F., et al. 2019. “Pantographic metamaterials: An example of mathematically driven design and of its technological challenges.” Continuum Mech. Thermodyn. 31 (4): 851–884. https://doi.org/10.1007/s00161-018-0689-8.
Dunn, M. L., and M. Taya. 1993a. “Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites.” Int. J. Solids Struct. 30 (2): 161–175. https://doi.org/10.1016/0020-7683(93)90058-F.
Dunn, M. L., and M. Taya. 1993b. “Electromechanical properties of porous piezoelectric ceramics.” J. Am. Ceram. Soc. 76 (7): 1697–1706. https://doi.org/10.1111/j.1151-2916.1993.tb06637.x.
Elhajjar, R., V. La Saponara, A. Muliana, Y. Lin, and H. A. Sodano. 2013. “Active fiber composites.” In Smart composites: Mechanics and design, 99–128. New York: CRC Press.
Fang, P., M. Wegener, W. Wirges, R. Gerhard, and L. Zirkel. 2007. “Cellular polyethylene-naphthalate ferroelectrets: Foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity.” Appl. Phys. Lett. 90 (19): 192908. https://doi.org/10.1063/1.2738365.
Fey, T., F. Eichhorn, G. Han, K. Ebert, M. Wegener, A. Roosen, K.-I. Kakimoto, and P. Greil. 2016. “Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure.” Smart Mater. Struct. 25 (1): 015017. https://doi.org/10.1088/0964-1726/25/1/015017.
Geis, S., P. Löbmann, S. Seifert, and J. Fricke. 2000. “Dielectric properties of PZT aerogels.” Ferroelectrics 241 (1): 75–82. https://doi.org/10.1080/00150190008224977.
Gibson, L. J., and M. F. Ashby. 1997. Cellular solids: Structure and properties. Cambridge: Cambridge University Press.
Grima, J. N., L. Oliveri, D. Attard, B. Ellul, R. Gatt, G. Cicala, and G. Recca. 2010. “Hexagonal honeycombs with zero Poisson’s ratios and enhanced stiffness.” Adv. Eng. Mater. 12 (9): 855–862. https://doi.org/10.1002/adem.201000140.
Hikita, K., K. Yamada, M. Nishioka, and M. Ono. 2011. “Piezoelectric properties of the porous PZT and the porous PZT composite with silicone rubber.” Ferroelectrics 49 (1): 265–272. https://doi.org/10.1080/00150198308244698.
Iyer, S., M. Alkhader, and T. A. Venkatesh. 2014. “Electromechanical response of piezoelectric honeycomb foam structures.” J. Am. Ceram. Soc. 97 (3): 826–834. https://doi.org/10.1111/jace.12699.
Iyer, S., M. Alkhader, and T. A. Venkatesh. 2015. “Electromechanical behavior of auxetic piezoelectric cellular solids.” Scr. Mater. 99 (Apr): 65–68. https://doi.org/10.1016/j.scriptamat.2014.11.030.
Iyer, S., and T. A. Venkatesh. 2010. “Electromechanical response of porous piezoelectric materials: Effects of porosity connectivity.” Appl. Phys. Lett. 97 (7): 072904. https://doi.org/10.1063/1.3481416.
Iyer, S., and T. A. Venkatesh. 2011. “Electromechanical response of (3-0) porous piezoelectric materials: Effects of porosity shape.” J. Appl. Phys. 110 (3): 034109. https://doi.org/10.1063/1.3622509.
Jiang, M., I. Jasiuk, and M. Ostoja-Starzewski. 2002. “Apparent thermal conductivity of periodic two-dimensional composites.” Comput. Mater. Sci. 25 (3): 329–338. https://doi.org/10.1016/S0927-0256(02)00234-3.
Kanit, T., S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. 2003. “Determination of the size of the representative volume element for random composites: Statistical and numerical approach.” Int. J. Solids Struct. 40 (13): 3647–3679. https://doi.org/10.1016/S0020-7683(03)00143-4.
Kara, H., R. Ramesh, R. Stevens, and C. R. Bowen. 2003. “Porous PZT ceramics for receiving transducers.” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 (3): 289–296. https://doi.org/10.1109/TUFFC.2003.1193622.
Kar-Gupta, R., and T. A. Venkatesh. 2006. “Electromechanical response of porous piezoelectric materials.” Acta Mater. 54 (15): 4063–4078.
Kar-Gupta, R., and T. A. Venkatesh. 2008. “Electromechanical response of piezoelectric composites: Effects of geometric connectivity and grain size.” Acta Mater. 56 (15): 3810–3823. https://doi.org/10.1016/j.actamat.2008.04.031.
Khan, K. A., and R. K. Abu Al-Rub. 2017. “Time dependent response of architectured Neovius foams.” Int. J. Mech. Sci. 126 (Jun): 106–119. https://doi.org/10.1016/j.ijmecsci.2017.03.017.
Khan, K. A., and R. K. Abu Al-Rub. 2018a. “Modeling time and frequency domain viscoelastic behavior of architectured foams.” J. Eng. Mech. 144 (6): 04018029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001448.
Khan, K. A., and R. K. Abu Al-Rub. 2018b. “Viscoelastic properties of architected foams based on the Schoen IWP triply periodic minimal surface.” In Mechanics of advanced materials and structures, 1–14. Philadelphia: Taylor & Francis.
Khan, K. A., and M. A. Khan. 2019. “3-3 piezoelectric metamaterial with negative and zero Poisson’s ratio for hydrophones applications.” Mater. Res. Bull. 112 (Apr): 194–204. https://doi.org/10.1016/j.materresbull.2018.12.016.
Khan, K. A., and A. H. Muliana. 2009. “A multi-scale model for coupled heat conduction and deformations of viscoelastic functionally graded materials.” Compos. Part B: Eng. 40 (6): 511–521. https://doi.org/10.1016/j.compositesb.2009.02.003.
Lee, S.-H., S.-H. Jun, H.-E. Kim, and Y.-H. Koh. 2007. “Fabrication of porous PZT-PZN piezoelectric ceramics with high hydrostatic figure of merits using camphene-based freeze casting.” J. Am. Ceram. Soc. 90 (9): 2807–2813. https://doi.org/10.1111/j.1551-2916.2007.01834.x.
Lethiecq, M., F. Levassort, and L. P. Tran-Huu-Hue. 2004. “New low acoustic impedance piezoelectric material for broadband transducer applications.” In Vol. 2 of Proc., 2004 IEEE Ultrasonics Symp., 1153–1156. New York: IEEE.
Levassort, F., M. Lethiecq, C. Millar, and L. Pourcelot. 1998. “Modeling of highly loaded 0-3 piezoelectric composites using a matrix method.” IEEE Trans. Ultrasonic, Ferroelectr. Freq. Control 45 (6): 1497–1505. https://doi.org/10.1109/58.738289.
Li, S. 2008. “Boundary conditions for unit cells from periodic microstructures and their implications.” Compos. Sci. Technol. 68 (9): 1962–1974. https://doi.org/10.1016/j.compscitech.2007.03.035.
Luxner, M. H., J. Stampfl, and H. E. Pettermann. 2005. “Finite element modeling concepts and linear analyses of 3D regular open cell structures.” J. Mater. Sci. 40 (22): 5859–5866. https://doi.org/10.1007/s10853-005-5020-y.
Marselli, S., V. Pavia, C. Galassi, E. Roncari, F. Craciun, and G. Guidarelli. 1999. “Porous piezoelectric ceramic hydrophone.” J. Acoust. Soc. Am. 106 (2): 733–738. https://doi.org/10.1121/1.427091.
Masters, I. G., and K. E. Evans. 1996. “Models for the elastic deformation of honeycombs.” Compos. Struct. 35 (4): 403–422. https://doi.org/10.1016/S0263-8223(96)00054-2.
Mikata, Y. 2001. “Explicit determination of piezoelectric Eshelby tensors for a spheroidal inclusion.” Int. J. Solids Struct. 38 (40–41): 7045–7063. https://doi.org/10.1016/S0020-7683(00)00419-4.
Misra, A., and P. Poorsolhjouy. 2016. “Granular micromechanics based micromorphic model predicts frequency band gaps.” Continuum Mech. Thermodyn. 28 (1–2): 215–234. https://doi.org/10.1007/s00161-015-0420-y.
Muliana, A. 2011. “Time dependent behavior of ferroelectric materials undergoing changes in their material properties with electric field and temperature.” Int. J. Solids Struct. 48 (19): 2718–2731. https://doi.org/10.1016/j.ijsolstr.2011.05.021.
Nagata, K., H. Igarashi, K. Okazaki, and R. C. Bradt. 1980. “Properties of an interconnected porous Pb(Zr, Ti)O3 ceramic.” Jpn. J. Appl. Phys. 19 (1): L37–L40. https://doi.org/10.1143/JJAP.19.L37.
Newnham, R. E., D. P. Skinner, and L. E. Cross. 1978. “Connectivity and piezoelectric-pyroelectric composites.” Mater. Res. Bull. 13 (5): 525–536. https://doi.org/10.1016/0025-5408(78)90161-7.
Papka, S. D., and S. Kyriakides. 1999. “Biaxial crushing of honeycombs:—Part 1: Experiments.” Int. J. Solids Struct. 36 (29): 4367–4396. https://doi.org/10.1016/S0020-7683(98)00224-8.
Piazza, D., C. Capiani, and C. Galassi. 2005. “Piezoceramic material with anisotropic graded porosity.” J. Eur. Ceram. Soc. 25 (12): 3075–3078. https://doi.org/10.1016/j.jeurceramsoc.2005.03.193.
Ramesh, R., C. D. Prasad, T. K. V. Kumar, L. A. Gavane, and R. M. R. Vishnubhatla. 2006. “Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.” Ultrasonics 44 (4): 341–349. https://doi.org/10.1016/j.ultras.2006.02.001.
Richard, C., H. S. Lee, and D. Guyomar. 2004. “Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance.” Ultrasonics 42 (1–9): 417–424. https://doi.org/10.1016/j.ultras.2003.12.037.
Rosi, G., and N. Auffray. 2016. “Anisotropic and dispersive wave propagation within strain-gradient framework.” Wave Motion 63 (Jun): 120–134. https://doi.org/10.1016/j.wavemoti.2016.01.009.
Sigmund, O., S. Torquato, and I. A. Aksay. 1998. “On the design of 1-3 piezocomposites using topology optimization.” J. Mater. Res. 13 (4): 1038–1048. https://doi.org/10.1557/JMR.1998.0145.
Silva, E. C. N., J. S. O. Fonseca, and N. Kikuchi. 1998. “Optimal design of periodic piezocomposites.” Comput. Methods Appl. Mech. Eng. 159 (1–2): 49–77. https://doi.org/10.1016/S0045-7825(98)80103-5.
Silva, E. N., J. O. Fonseca, and N. Kikuchi. 1997. “Optimal design of piezoelectric microstructures.” Comput. Mech. 19 (5): 397–410. https://doi.org/10.1007/s004660050188.
Skinner, D. P., R. E. Newnham, and L. E. Cross. 1978. “Flexible composite transducers.” Mater. Res. Bull. 13 (6): 599–607. https://doi.org/10.1016/0025-5408(78)90185-X.
Smith, W. A. 1989. “The role of piezocomposites in ultrasonic transducers.” In Proc., IEEE Ultrasonics Symp., 755–766. New York: IEEE.
Smith, W. A. 1991. “Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson’s ratio.” In Vol. 1 of Proc., IEEE 1991 Ultrasonics Symp., 661–666. New York: IEEE.
Ting, R. Y. 2011. “Piezoelectric properties of a porous PZT ceramic.” Ferroelectrics 65 (1): 11–20. https://doi.org/10.1080/00150198508008955.
Topolov, V. Y., and C. R. Bowen. 2008. Electromechanical properties in composites based on ferroelectrics. New York: Springer.
Ueda, J., T. W. Secord, and H. H. Asada. 2010. “Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms.” IEEE/ASME Trans. Mechatron. 15 (5): 770–782. https://doi.org/10.1109/TMECH.2009.2034973.
Wadley, H. N. 2005. “Multifunctional periodic cellular metals.” Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 364 (1838): 31–68. https://doi.org/10.1098/rsta.2005.1697.
Wirges, W., M. Wegener, O. Voronina, L. Zirkel, and R. Gerhard-Multhaupt. 2007. “Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly(ethylene Terephthalate) films.” Adv. Funct. Mater. 17 (2): 324–329. https://doi.org/10.1002/adfm.200600162.
Xia, Z., Y. Zhang, and F. Ellyin. 2003. “A unified periodical boundary conditions for representative volume elements of composites and applications.” Int. J. Solids Struct. 40 (8): 1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6.
Yang, J. 2006. An introduction to the theory of piezoelectricity. New York: Springer.
Zhang, H. L., J.-F. Li, and B.-P. Zhang. 2007. “Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents.” Acta Mater. 55 (1): 171–181. https://doi.org/10.1016/j.actamat.2006.07.032.
Zhang, J., and M. F. Ashby. 1992. “The out-of-plane properties of honeycombs.” Int. J. Mech. Sci. 34 (6): 475–489. https://doi.org/10.1016/0020-7403(92)90013-7.
Zhu, H. X., J. F. Knott, and N. J. Mills. 1997. “Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells.” J. Mech. Phys. Solids 45 (3): 319–343. https://doi.org/10.1016/S0022-5096(96)00090-7.
Zohdi, T. I., and P. Wriggers, eds. 2005. “An introduction to computational micromechanics.” In Lecture notes in applied and computational mechanics. Berlin: Springer.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 12December 2019

History

Received: Jan 16, 2018
Accepted: Apr 2, 2019
Published online: Sep 28, 2019
Published in print: Dec 1, 2019
Discussion open until: Feb 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Aerospace Engineering, Khalifa Univ. of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE (corresponding author). Email: [email protected]
S. Al-Mansoor
Dept. of Aerospace Engineering, Khalifa Univ. of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.
S. Z. Khan
Dept. of Mechanical Engineering, Faculty of Engineering, Islamic Univ. of Madinah, P.O. Box 170, Madinah, Saudi Arabia.
Professor, School of Aerospace, Transport and Manufacturing, Cranfield Univ., Cranfield, Bedfordshire MK43 0AL, UK. ORCID: https://orcid.org/0000-0001-9028-1288

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share