Technical Papers
Feb 25, 2019

Hysteretic Shell Finite Element

Publication: Journal of Engineering Mechanics
Volume 145, Issue 5

Abstract

A hysteretic shell finite element for the nonlinear, static, and dynamic analysis of structures is presented, formulated on the basis of classical theory of plasticity and finite deformation. The generalized smooth, rate-independent three-dimensional (3D) Bouc-Wen model is expressed in tensorial form incorporating the von Mises yield criterion and different types of nonlinear hardening laws. Based on this approach, a hysteretic shell finite element is derived in which the shell is considered as a number of fully bonded layers along the thickness. The elastic mixed interpolation of tensorial components with nine nodes (MITC9) element is extended by considering as additional hysteretic degrees of freedom the plastic strains, backstresses, and the variable yield stress. These are considered at the Gauss points of two faces and all interlaminar interfaces, the evolution of which is described by Bouc-Wen-type equations. Using this formulation, the effect of the nonlinear hardening on the response of a shell structure and in particular the phenomenon of ratcheting is investigated. The developed hysteretic shell element accounts for geometric nonlinear analysis and incorporates two constituent functionally graded materials. Numerical results are presented, demonstrating the efficacy, accuracy, and generality of the proposed approach.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahmad, S., B. M. Irons, and O. C. Zienkiewicz. 1970. “Analysis of thick and thin shell structures by curved finite elements.” Int. J. Numer. Methods Eng. 2 (3): 419–451. https://doi.org/10.1002/nme.1620020310.
Arciniega, R. A., and J. N. Reddy. 2007. “Large deformation analysis of functionally graded shells.” Int. J. Solids Struct. 44 (6): 2036–2052. https://doi.org/10.1016/j.ijsolstr.2006.08.035.
Argyris, J. 1982. “An excursion into large rotations.” Comput. Methods Appl. Mech. Eng. 32 (1–3): 85–155. https://doi.org/10.1016/0045-7825(82)90069-X.
Argyris, J. H., J. St. Doltsinis, and K. J. Willam. 1979. “New developments in the inelastic analysis of quasistatic and dynamic problems.” Int. J. Numer. Methods Eng. 14 (12): 1813–1850. https://doi.org/10.1002/nme.1620141206.
Bathe, K. J. 1996. Finite element procedures. Upper Saddle River, NJ: Prentice Hall.
Bathe, K. J., and S. Bolourchi. 1980. “A geometric and material nonlinear plate and shell element.” Comput. Struct. 11 (1–2): 23–48. https://doi.org/10.1016/0045-7949(80)90144-3.
Bathe, K. J., and E. N. Dvorkin. 1986. “A formulation of general shell elements—The use of mixed interpolation of tensorial components.” Int. J. Numer. Methods Eng. 22 (3): 697–722. https://doi.org/10.1002/nme.1620220312.
Bathe, K. J., P. S. Lee, and J. F. Hiller. 2003. “Towards improving the MITC9 shell element.” Comput. Struct. 81 (8–11): 477–489. https://doi.org/10.1016/S0045-7949(02)00483-2.
Belytschko, T., B. L. Wong, and H. Stolarski. 1989. “Assumed strain stabilization procedure for the 9-node Lagrange shell element.” Int. J. Numer. Methods Eng. 28 (2): 385–414. https://doi.org/10.1002/nme.1620280210.
Bischoff, M., and E. Ramm. 1997. “Shear deformable shell elements for large strains and rotations.” Int. J. Numer. Methods Eng. 40 (23): 4427–4449. https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23%3C4427::AID-NME268%3E3.0.CO;2-9.
Bonet, J., and R. D. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Communications in numerical methods in engineering. Cambridge, UK: Cambridge University Press.
Bouc, R. 1967. “Forced vibration of mechanical system with hysteresis.” In Proc., 4th Conf. on Nonlinear Oscillations. Prague, Czech Republic: Academia.
Bucalem, M. L., and K. J. Bathe. 1993. “Higher-order MITC general shell elements.” Int. J. Numer. Methods Eng. 36 (21): 3729–3754. https://doi.org/10.1002/nme.1620362109.
Carrera, E., M. Cinefra, G. Li, and G. M. Kulikov. 2016. “MITC9 shell finite elements with miscellaneous through-the-thickness functions for the analysis of laminated structures.” Compos. Struct. 154: 360–373. https://doi.org/10.1016/j.compstruct.2016.07.032.
Chaboche, J. L. 1989. “Constitutive equations for cyclic plasticity and cyclic viscoplasticity.” Int. J. Plast. 5 (3): 247–302. https://doi.org/10.1016/0749-6419(89)90015-6.
Chaboche, J. L. 1991. “On some modifications of kinematic hardening to improve the description of ratchetting effects.” Int. J. Plast. 7 (7): 661–678. https://doi.org/10.1016/0749-6419(91)90050-9.
Chakravorty, D., P. K. Sinha, and J. N. Bandyopadhyay. 1998. “Applications of FEM on free and forced vibration of laminated shells.” J. Eng. Mech. 124 (1): 1–8. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:1(1).
Charalampakis, A. E., and V. K. Koumousis. 2009. “A Bouc-Wen model compatible with plasticity postulates.” J. Sound Vib. 322 (4–5): 954–968. https://doi.org/10.1016/j.jsv.2008.11.017.
Chopra, A. K. 2011. Dynamics of structures: Theory and applications to earthquake engineering: Pearson education. Upper Saddle River, NJ: Pearson Prentice Hall.
Cinefra, M., and S. Valvano. 2016. “A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites.” Mech. Adv. Mater. Struct. 23 (11): 1312–1325. https://doi.org/10.1080/15376494.2015.1070304.
Cinefra, M., S. Valvano, and E. Carrera. 2015. “A layer-wise MITC9 finite element for the free-vibration analysis of plates with Piezo-patches.” Int. J. Smart Nano Mater. 6 (2): 85–104. https://doi.org/10.1080/19475411.2015.1037377.
Cinefra, M., S. Valvano, and E. Carrera. 2016. “Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element.” J. Therm. Stresses 39 (2): 121–141. https://doi.org/10.1080/01495739.2015.1123591.
Crisfield, M. A. 1991. Vol. 1 of Non-linear finite element analysis of solids and structures: Essentials. New York: Wiley.
Crisfield, M. A. 1997. Vol. 2 of Non-linear finite element analysis of solids and structures: Advanced topics. New York: Wiley.
Dafalias, Y. F., K. I. Kourousis, and G. J. Saridis. 2008a. “Corrigendum to ‘Multiplicative AF kinematic hardening in plasticity’.” Int. J. Solids Struct. 45 (10): 2861–2880. https://doi.org/10.1016/j.ijsolstr.2008.01.001.
Dafalias, Y. F., K. I. Kourousis, and G. J. Saridis. 2008b. “Multiplicative AF kinematic hardening in plasticity.” Int. J. Solids Struct. 45 (10): 2861–2880. https://doi.org/10.1016/j.ijsolstr.2008.01.001.
de Souza Neto, E. A., D. Peri, and D. R. J. Owen. 2008. Computational methods for plasticity. Computational methods for plasticity—Theory and applications. Chichester, UK: Wiley.
Dvorkin, E. N. 1995. “Nonlinear analysis of shells using the MITC formulation.” Arch. Comput. Methods Eng. 2 (2): 1–50. https://doi.org/10.1007/BF02904994.
Erlicher, S., and N. Point. 2004. “Thermodynamic admissibility of Bouc-Wen type hysteresis models.” C. R. Mec. 332 (1): 51–57. https://doi.org/10.1016/j.crme.2003.10.009.
Frederick, C. O., and P. J. Armstrong. 1966. A mathematical representation of the multiaxial Bauschinger effect.
George, A., and J. W. H. Liu. 1981. Computer solution of large sparse positive definite systems. Englewood Cliffs, NJ: Prentice-Hall.
Giannakopoulos, A. E., S. Suresh, M. Finot, and M. Olsson. 1995. “Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients.” Acta Metall. Mater. 43 (4): 1335–1354. https://doi.org/10.1016/0956-7151(94)00360-T.
Hassan, T., and S. Kyriakides. 1992. “Ratcheting in cyclic plasticity. Part I: Uniaxial behavior.” Int. J. Plast. 8 (1): 91–116. https://doi.org/10.1016/0749-6419(92)90040-J.
Hibbitt, H. D., B. Karlsson, and E. P. Sorensen. 2001. Abaqus/standard user’s manual. Providence, RI: Hibbitt, Karlsson, & Sorensen.
Huang, H. C., and E. Hinton. 1986. “A new nine node degenerated shell element with enhanced membrane and shear interpolation.” Int. J. Numer. Methods Eng. 22 (1): 73–92. https://doi.org/10.1002/nme.1620220107.
Hughes, T. J. R., and E. Carnoy. 1983. “Nonlinear finite element shell formulation accounting for large membrane strains.” Comput. Methods Appl. Mech. Eng. 39 (1): 69–82. https://doi.org/10.1016/0045-7825(83)90074-9.
Hughes, T. J. R., and W. K. Liu. 1981. “Nonlinear finite element analysis of shells. Part I: Three-dimensional shells.” Comput. Methods Appl. Mech. Eng. 26 (3): 331–362. https://doi.org/10.1016/0045-7825(81)90121-3.
Jiao, R., and S. Kyriakides. 2009. “Ratcheting, wrinkling and collapse of tubes under axial cycling.” Int. J. Solids Struct. 46 (14–15): 2856–2870. https://doi.org/10.1016/j.ijsolstr.2009.03.018.
Jiao, R., and S. Kyriakides. 2011a. “Ratcheting and wrinkling of tubes due to axial cycling under internal pressure. Part I: Experiments.” Int. J. Solids Struct. 48 (20): 2814–2826. https://doi.org/10.1016/j.ijsolstr.2011.05.027.
Jiao, R., and S. Kyriakides. 2011b. “Ratcheting and wrinkling of tubes due to axial cycling under internal pressure. Part II: Analysis.” Int. J. Solids Struct. 48 (20): 2827–2836. https://doi.org/10.1016/j.ijsolstr.2011.05.026.
Khan, A. S., and S. Huang. 1995. Continuum theory of plasticity, 440. New York: Wiley.
Ko, Y., P. S. Lee, and K. J. Bathe. 2017a. “The MITC4+ shell element in geometric nonlinear analysis.” Comput. Struct. 185: 1–14. https://doi.org/10.1016/j.compstruc.2017.01.015.
Ko, Y., Y. Lee, P. S. Lee, and K. J. Bathe. 2017b. “Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems.” Comput. Struct. 193: 187–206. https://doi.org/10.1016/j.compstruc.2017.08.003.
Kottari, A. K., A. E. Charalampakis, and V. K. Koumousis. 2014. “A consistent degrading Bouc-Wen model.” Eng. Struct. 60: 235–240. https://doi.org/10.1016/j.engstruct.2013.12.025.
Liu, W. K., Y. Guo, S. Tang, and T. Belytschko. 1998. “A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis.” Comput. Methods Appl. Mech. Eng. 154 (1–2): 69–132. https://doi.org/10.1016/S0045-7825(97)00106-0.
Masud, A., and M. Panahandeh. 1999. “Finite-element formulation for analysis of laminated composites.” J. Eng. Mech. 125 (10): 1115–1124. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1115).
Masud, A., and C. L. Tham. 2000. “Three-dimensional corotational framework for elasto-plastic analysis of multilayered composite shells.” AIAA J. 38 (12): 2320–2327. https://doi.org/10.2514/2.901.
Masud, A., C. L. Tham, and W. K. Liu. 2000. “Stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells.” Comput. Mech. 26 (1): 1–12. https://doi.org/10.1007/s004660000144.
Moysidis, A. N., and V. K. Koumousis. 2015. “Hysteretic plate finite element.” J. Eng. Mech. 141 (10): 4015039. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000918.
Nayak, A. N., and J. N. Bandyopadhyay. 2005. “Free vibration analysis of laminated stiffened shells.” J. Eng. Mech. 131 (1): 100–105. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:1(100).
Owen, D. R. J., and E. Hinton. 1980. Finite elements in plasticity: Theory and practice. Swansea, UK: Pineridge Press.
Pawsey, S. F., and R. W. Clough. 1971. “Improved numerical integration of thick shell finite elements.” Int. J. Numer. Methods Eng. 3 (4): 575–586. https://doi.org/10.1002/nme.1620030411.
Pinsky, P. M., and J. Jang. 1988. “Elastoplastic shell element based on assumed covariant strain interpolations.” J. Eng. Mech. 114 (6): 1045–1062. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:6(1045).
Radhakrishnan, K., and A. C. Hindmarsh. 1993. Description and use of LSODE, the Livermore solver for ordinary differential equations. Washington, DC: National Aeronautics and Space Administration.
Schimmels, S. A., and A. N. Palazotto. 1994. “Nonlinear geometric and material behavior of shell structures with large strains.” J. Eng. Mech. 120 (2): 320–345. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(320).
Simo, J. C., and T. J. R. Hughes. 1998. Computational inelasticity. New York: Springer.
Simo, J. C., M. S. Rifai, and D. D. Fox. 1990. “On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching.” Comput. Methods Appl. Mech. Eng. 81 (1): 91–126. https://doi.org/10.1016/0045-7825(90)90143-A.
Sivaselvan, M. V., and A. M. Reinhorn. 2000. “Hysteretic models for deteriorating inelastic structures.” J. Eng. Mech. 126 (6): 633–640. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(633).
Sofianos, C. D., and V. K. Koumousis. 2017. “Hysteretic beam element with degrading smooth models.” Arch. Appl. Mech. 88 (1–2): 253–269. https://doi.org/10.1007/s00419-017-1263-8.
Tham, C. L., Z. Zhang, and A. Masud. 2005. “An elasto-plastic damage model cast in a co-rotational kinematic framework for large deformation analysis of laminated composite shells.” Comput. Methods Appl. Mech. Eng. 194 (21–24): 2641–2660. https://doi.org/10.1016/j.cma.2004.07.050.
Toscano, R. G., and E. N. Dvorkin. 2007. “A shell element for finite strain analyses: Hyperelastic material models.” Eng. Comput. 24 (5): 514–535. https://doi.org/10.1108/02644400710755898.
Triantafyllou, S. P., and V. K. Koumousis. 2014. “Hysteretic finite elements for the nonlinear static and dynamic analysis of structures.” J. Eng. Mech. 140 (6): 04014025. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000699.
Wen, Y.-K. 1976. “Method for random vibration of hysteretic systems.” J. Eng. Mech. Div. 102 (2): 249–263.
Wisniewski, K., and P. Panasz. 2013. “Two improvements in formulation of nine-node element MITC9.” Int. J. Numer. Methods Eng. 93 (6): 612–634. https://doi.org/10.1002/nme.4399.
Woo, J., and S. A. Meguid. 2001. “Nonlinear analysis of functionally graded plates and shallow shells.” Int. J. Solids Struct. 38 (42–43): 7409–7421. https://doi.org/10.1016/S0020-7683(01)00048-8.
Zienkiewicz, O. C., R. L. Taylor, and J. M. Too. 1971. “Reduced integration technique in general analysis of plates and shells.” Int. J. Numer. Methods Eng. 3 (2): 275–290. https://doi.org/10.1002/nme.1620030211.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 5May 2019

History

Received: Feb 5, 2018
Accepted: Oct 3, 2018
Published online: Feb 25, 2019
Published in print: May 1, 2019
Discussion open until: Jul 25, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

A. N. Moysidis [email protected]
Ph.D. Candidate, Institute of Structural Analysis and Aseismic Research, National Technical Univ. of Athens, Zografou Campus, Athens 15780, Greece. Email: [email protected]
V. K. Koumousis, M.ASCE [email protected]
Professor, Institute of Structural Analysis and Aseismic Research, National Technical Univ. of Athens, Zografou Campus, Athens 15780, Greece (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share