Abstract

Hydrated cement produces the strength and stiffness of concrete, a widely utilized infrastructural material. Estimation of elastic constants of hydrated cement, a heterogeneous material consisting of numerous constituents, is a complex problem. This paper presents a comprehensive multiscale micromechanical estimation methodology. X-ray diffraction (XRD) investigations along with Rietveld refinements were done to estimate the constituents of hydrated cement. Molecular dynamics investigations were carried out for each individual constituent to determine individual elastic constants. Micro computed tomography (microCT) investigations determined the porosity of the sample at different cross sections and also estimated the pore-size distributions. The Mori–Tanaka homogenization principle was used on the constituent elastic constants to estimate the final elastic constants of the hydrated cement, which were compared with values obtained from experimental investigations in the literature. The methodology demonstrated that consideration of tobermorite (all three phases) and jennite along with the estimated macroporosity can predict the overall stiffness of the cement paste with an error of about 8%.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by Future of Cities project (Project code ECI) under the Ministry of Human Resource Development, India. The authors thank Professor Siddhartha Das, Metallurgical and Materials Engineering Department, IIT Kharagpur for conducting Rietveld analysis with TOPAS version 4.2 software in his laboratory. The high-resolution XRD and microCT investigations were carried out using the facilities at the Central Research Facilities (CRF) at the Indian Institute of Technology, Kharagpur, India. The second and third authors are grateful to IIT Kharagpur for their doctoral fellowships.

References

Allen, M. P., and D. J. Tildesley. 1989. Computer simulation of liquids. New York: Oxford University Press.
Allmann, R. 1977. “Refinement of the hybrid layer structure [Ca2Al(OH)6]+·[1/2SO4·3H2O]−.” N Jahrb Mineral Monatsh. 1977: 136–143.
Al-Ostaz, A., W. Wu, A. D. Cheng, and C. R. Song. 2010. “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement.” Compos. Part B Eng. 41 (7): 543–549. https://doi.org/10.1016/j.compositesb.2010.06.005.
Benveniste, Y. 1987. “A new approach to the application of Mori-Tanaka’s theory in composite materials.” Mech. Mater. 6 (2): 147–157. https://doi.org/10.1016/0167-6636(87)90005-6.
Bonaccorsi, E., S. Merlino, and A. R. Kampf. 2005. “The crystal structure of tobermorite 14 Å (plombierite), a C-S-H phase.” J. Am. Ceram. Soc. 88 (3): 505–512. https://doi.org/10.1111/j.1551-2916.2005.00116.x.
Bonaccorsi, E., S. Merlino, and H. F. W. Taylor. 2004. “The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O.” Cem. Concr. Res. 34 (9): 1481–1488. https://doi.org/10.1016/j.cemconres.2003.12.033.
Colville, A. A., and S. Geller. 1971. “The crystal structure of brownmillerite, Ca2FeAlO5.” Acta Crystallogr. B-Struct. Sci. 27 (12): 2311–2315. https://doi.org/10.1107/S056774087100579X.
Constantinides, G., and F. J. Ulm. 2004. “The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling.” Cem. Concr. Res. 34 (1): 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8.
Dandekar, D. P., and A. L. Ruoff. 1968. “Temperature dependence of the elastic constants of calcite between 160 and 300 K.” J. Appl. Phys. 39 (13): 6004–6009. https://doi.org/10.1063/1.1656105.
De la Torre, A. G., and M. G. Aranda. 2003. “Accuracy in Rietveld quantitative phase analysis of portland cements.” J. Appl. Cryst. 36 (5): 1169–1176. https://doi.org/10.1107/S002188980301375X.
Desgranges, L., D. Grebille, G. Calvarin, G. Chevrier, N. Floquet, and J. C. Niepce. 1993. “Hydrogen thermal motion in calcium hydroxide: Ca(OH)2.” Acta Crystallogr. B-Struct. Sci. 49 (5): 812–817. https://doi.org/10.1107/S0108768193003556.
Dharmawardhana, C. C., A. Misra, S. Aryal, P. Rulis, and W. Y. Ching. 2013. “Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals.” Cem. Concr. Res. 52: 123–130. https://doi.org/10.1016/j.cemconres.2013.05.009.
Durdziński, P. T., M. B. Haha, M. Zajac, and K. L. Scrivener. 2017. “Phase assemblage of composite cements.” Cem. Concr. Res. 99: 172–182. https://doi.org/10.1016/j.cemconres.2017.05.009.
Ferreira, E. G. A., F. Yokaichiya, M. S. Rodrigues, A. L. Beraldo, A. Isaac, N. Kardjilov, and M. K. Franco. 2017. “Assessment of Greener Cement by employing thermally treated sugarcane straw ashes.” Constr. Build. Mater. 141: 343–352. https://doi.org/10.1016/j.conbuildmat.2017.03.022.
Fisler, D. K., J. D. Gale, and R. T. Cygan. 2000. “A shell model for the simulation of rhombohedral carbonate minerals and their point defects.” Am. Minerol. 85 (1): 217–224. https://doi.org/10.2138/am-2000-0121.
Francois, M., G. Renaudin, and O. Evrard. 1998. “A cementitious compound with composition 3CaO·Al2332O.” Acta Crystallogr. Sect. C. 54 (9): 1214–1217.
Gallé, C. 2001. “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum-, and freeze-drying.” Cem. Concr. Res. 31 (10): 1467–1477. https://doi.org/10.1016/S0008-8846(01)00594-4.
Graf, D. L. 1961. “Crystallographic tables for the rhombohedral carbonates.” Am. Minerol. 46 (11–12): 1283–1316.
Haecker, C. J., E. J. Garboczi, J. W. Bullard, R. B. Bohn, Z. Sun, S. P. Shah, and T. Voigt. 2005. “Modeling the linear elastic properties of portland cement paste.” Cem. Concr. Res. 35 (10): 1948–1960. https://doi.org/10.1016/j.cemconres.2005.05.001.
Hajilar, S., and B. Shafei. 2015. “Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations.” Comput. Mater. Sci. 101: 216–226. https://doi.org/10.1016/j.commatsci.2014.12.006.
Hartman, M. R., and R. Berliner. 2006. “Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques.” Cem. Concr. Res. 36 (2): 364–370. https://doi.org/10.1016/j.cemconres.2005.08.004.
Haussühl, S. 1965. “Elastische und thermoelastische eigenschaften von CaSO4·2H2O (Gips).” Z. Kristallogr. 122 (3–4): 311–314. https://doi.org/10.1524/zkri.1965.122.3-4.311.
Heyliger, P., H. Ledbetter, and S. Kim. 2003. “Elastic constants of natural quartz.” J. Acoust. Soc. Am. 114 (2): 644–650. https://doi.org/10.1121/1.1593063.
Hill, R. 1952. “The elastic behaviour of a crystalline aggregate.” Proc. Phys. Soc. Sec. A. 65 (5): 349–354. https://doi.org/10.1088/0370-1298/65/5/307.
Hill, R. 1965. “A self-consistent mechanics of composite materials.” J. Mech. Phys. Solids 13 (4): 213–222. https://doi.org/10.1016/0022-5096(65)90010-4.
Jadhav, R., and N. C. Debnath. 2011. “Computation of X-ray powder diffractograms of cement components and its application to phase analysis and hydration performance of OPC cement.” Bull. Mater. Sci. 34 (5): 1137–1150. https://doi.org/10.1007/s12034-011-0134-0.
Jansen, D., F. Goetz-Neunhoeffer, C. Stabler, and J. Neubauer. 2011a. “A remastered external standard method applied to the quantification of early OPC hydration.” Cem. Concr. Res. 41 (6): 602–608. https://doi.org/10.1016/j.cemconres.2011.03.004.
Jansen, D., C. Stabler, F. Goetz-Neunhoeffer, S. Dittrich, and J. Neubauer. 2011b. “Does ordinary portland cement contain amorphous phase? A quantitative study using an external standard method.” Powder Diffr. 26 (1): 31–38. https://doi.org/10.1154/1.3549186.
Jennings, H. M. 2000. “A model for the microstructure of calcium silicate hydrate in cement paste.” Cem. Concr. Res. 30 (1): 101–116. https://doi.org/10.1016/S0008-8846(99)00209-4.
Kniess, C. T., J. C. DeLima, and P. B. Prates. 2012. “The quantification of crystalline phases in materials: Applications of Rietveld method.” In Sintering—Methods and products, edited by V. Shatokha, 293–316. London: IntechOpen.
Königsberger, M., C. Hellmich, and B. Pichler. 2016. “Densification of CSH is mainly driven by available precipitation space, as quantified through an analytical cement hydration model based on NMR data.” Cem. Concr. Res. 88: 170–183. https://doi.org/10.1016/j.cemconres.2016.04.006.
Laugesen, J. L. 2005. “Density functional calculations of elastic properties of portlandite, Ca(OH)2.” Cem. Concr. Res. 35 (2): 199–202. https://doi.org/10.1016/j.cemconres.2004.07.036.
LePage, Y., and G. Donnay. 1976. “Refinement of the crystal structure of low-quartz.” Acta Crystallogr B. 32 (8): 2456–2459.
Levien, L., C. T. Prewitt, and D. J. Weidner. 1980. “Structure and elastic properties of quartz at pressure.” Am. Min. 65 (9–10): 920–930.
Manzano, H. 2009. “Atomistic simulation studies of the cement paste components.” Ph.D. thesis. Dept. of Physical Chemistry, Univ. of the Basque Country UPV/EHU.
Manzano, H., J. S. Dolado, and A. Ayuela. 2009a. “Elastic properties of the main species present in portland cement pastes.” Acta Mater. 57 (5): 1666–1674. https://doi.org/10.1016/j.actamat.2008.12.007.
Manzano, H., J. S. Dolado, and A. Ayuela. 2009b. “Structural, mechanical, and reactivity properties of tricalcium aluminate using first-principles calculations.” J. Am. Ceram. Soc. 92 (4): 897–902. https://doi.org/10.1111/j.1551-2916.2009.02963.x.
McCusker, L. B., R. B. Von Dreele, D. E. Cox, D. Louer, and P. Scardi. 1999. “Rietveld refinements guidelines.” J. Appl. Crystallogr. 32 (1): 36–50. https://doi.org/10.1107/S0021889898009856.
Meille, S., and E. J. Garboczi. 2001. “Linear elastic properties of 2D and 3D models of porous materials made from elongated objects.” Modell. Simul. Mater. Sci. Eng. 9 (5): 371–390. https://doi.org/10.1088/0965-0393/9/5/303.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 1999. “Tobermorites: Their real structure and order-disorder (OD) character.” Am. Mineral. 84 (10): 1613–1621. https://doi.org/10.2138/am-1999-1015.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 2001. “The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications.” Eur. J. Mineral 13 (3): 577–590. https://doi.org/10.1127/0935-1221/2001/0013-0577.
Midgley, C. M. 1952. “The crystal structure of β dicalcium silicate.” Acta Crystallogr. 5 (3): 307–312. https://doi.org/10.1107/S0365110X52000964.
Mishra, R. K., et al. 2017. “cemff: A force field database for cementitious materials including validations, applications and opportunities.” Cem. Concr. Res. 102: 68–89. https://doi.org/10.1016/j.cemconres.2017.09.003.
Mishra, R. K., L. Fernandez-Carrasco, R. J. Flatt, and H. Heinz. 2014. “A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution.” Dalton Trans. 43 (27): 10602–10616. https://doi.org/10.1039/C4DT00438H.
Mishra, R. K., R. J. Flatt, and H. Heinz. 2013. “Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules.” J. Phys. Chem. C 117 (20): 10417–10432. https://doi.org/10.1021/jp312815g.
Mondal, P., and J. W. Jeffery. 1975. “The crystal structure of tricalcium aluminate, Ca3Al2O6.” Acta Crystallogr. Sec. 31 (3): 689–697. https://doi.org/10.1107/S0567740875003639.
Moon, J., S. Yoon, R. Wentzcovitch, and P. J. M. Monteiro. 2014. “First principles elasticity of monocarboaluminate hydrates.” Am. Mineral. 99 (7): 1360–1368. https://doi.org/10.2138/am.2014.4597.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Mumme, W. G. 1995. “Crystal structure of tricalcium silicate from a portland cement clinker and its application to quantitative XRD analysis.” Neues Jahrb. Mineral. 4: 145–160.
Odler, I., and M. Roßler. 1985. “Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes. II. Effect of pore structure and of degree of hydration.” Cem. Concr. Res. 15 (3): 401–410. https://doi.org/10.1016/0008-8846(85)90113-9.
Pedersen, B. F., and D. Semmingsen. 1982. “Neutron diffraction refinement of the structure of gypsum CaSO4·2H2O.” Acta Crystallogr. Sec. B 38 (4): 1074–1077. https://doi.org/10.1107/S0567740882004993.
Pellenq, R. J. M., A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F. J. Ulm. 2009. “A realistic molecular model of cement hydrates.” Proc. Natl. Acad. Sci. 106 (38): 16102–16107. https://doi.org/10.1073/pnas.0902180106.
Pichler, B., and C. Hellmich. 2011. “Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model.” Cem. Concr. Res. 41 (5): 467–476. https://doi.org/10.1016/j.cemconres.2011.01.010.
Pichler, B., C. Hellmich, and J. Eberhardsteiner. 2009. “Spherical and acicular representation of hydrates in a micromechanical model for cement paste: Prediction of early-age elasticity and strength.” Acta Mech. 203 (3–4): 137–162. https://doi.org/10.1007/s00707-008-0007-9.
Powers, T. 1958. “Structure and physical properties of hardened portland cement paste.” J. Am. Ceram. Soc. 41 (1): 1–6. https://doi.org/10.1111/j.1151-2916.1958.tb13494.x.
Powers, T., and T. Brownyard. 1946. “Studies of the physical properties of hardened portland cement paste.” Am. Concr. Inst. J. Proc. 43 (9): 101–992.
Rappe, A. K., C. J. Casewit, K. S. Colwell, W. A. Goddard Iii, and W. M. Skiff. 1992. “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations.” J. Am. Chem. Soc. 114 (25): 10024–10035. https://doi.org/10.1021/ja00051a040.
Reuss, A. 1929. “Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle.” Z. Angew Math. Mech. 9 (1): 49–58. https://doi.org/10.1002/zamm.19290090104.
Richardson, I. G. 1999. “The nature of CSH in hardened cements.” Cem. Concr. Res. 29 (8): 1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4.
Richardson, I. G. 2004. “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of CSH: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, portland cement, and blends of portland cement with blast-furnace slag, metakaolin, or silica fume.” Cem. Concr. Res. 34 (9): 1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034.
Rietveld, H. M. 1969. “A profile refinement method for nuclear and magnetic structures.” J. Appl. Cryst. 2 (2): 65–71. https://doi.org/10.1107/S0021889869006558.
Rohl, A. L., K. Wright, and J. D. Gale. 2003. “Evidence from surface phonons for the (2 × 1) reconstruction of the (1014) surface of calcite from computer simulation.” Am. Minerol. 88 (5–6): 921–925. https://doi.org/10.2138/am-2003-5-622.
Röβler, M., and I. Odler. 1985. “Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity.” Cem. Concr. Res. 15 (2): 320–330. https://doi.org/10.1016/0008-8846(85)90113-9.
Runcevski, T., R. E. Dinnebier, O. V. Magdysyuk, and H. Pöllmann. 2012. “Crystal structures of calcium hemicarboaluminate and carbonated calcium hemicarboaluminate from synchrotron powder diffraction data.” Acta Crystallogr. B-Struct. Sci. 68 (5): 493–500.
Sanahuja, J., L. Dormieux, and G. Chanvillard. 2007. “Modelling elasticity of a hydrating cement paste.” Cem. Concr. Res. 37 (10): 1427–1439. https://doi.org/10.1016/j.cemconres.2007.07.003.
Scrivener, K. L., T. Fullmann, E. Gallucci, G. Walenta, and E. Bermejo. 2004. “Quantitative study of portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods.” Cem. Concr. Res. 34 (9): 1541–1547. https://doi.org/10.1016/j.cemconres.2004.04.014.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of portland cement.” Cem. Concr. Res. 78 (A): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Shahsavari, R., M. J. Buehler, R. J. M. Pellenq, and F. J. Ulm. 2009. “First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite.” J. Am. Ceram. Soc. 92 (10): 2323–2330. https://doi.org/10.1111/j.1551-2916.2009.03199.x.
Shahsavari, R., R. J. Pellenq, and F. J. Ulm. 2011. “Empirical force fields for complex hydrated calcio-silicate layered materials.” Phys. Chem. Chem. Phys. 13 (3): 1002–1011. https://doi.org/10.1039/C0CP00516A.
Smith, D. K., A. Majumdar, and F. Ordway. 1965. “The crystal structure of γ-dicalcium silicate.” Acta Crystallogr. 18 (4): 787–795. https://doi.org/10.1107/S0365110X65001780.
Snellings, R., A. Bazzoni, and K. L. Scrivener. 2014a. “The existence of amorphous phase in portland cements: Physical factors affecting Rietveld quantitative phase analysis.” Cem. Concr. Res. 59: 139–146. https://doi.org/10.1016/j.cemconres.2014.03.002.
Snellings, R., A. Salze, and K. L. Scrivener. 2014b. “Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements.” Cem. Concr. Res. 64: 89–98. https://doi.org/10.1016/j.cemconres.2014.06.011.
Sun, H. 1998. “COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds.” J. Phys. Chem. B 102 (38): 7338–7364. https://doi.org/10.1021/jp980939v.
Tennis, P. D., and H. M. Jennings. 2000. “A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes.” Cem. Concr. Res. 30 (6): 855–863. https://doi.org/10.1016/S0008-8846(00)00257-X.
Ulm, F. J., G. Constantinides, and F. H. Heukamp. 2004. “Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties.” Mater. Struct. 37 (1): 43–58. https://doi.org/10.1007/BF02481626.
Velez, K., S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino. 2001. “Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker.” Cem. Concr. Res. 31 (4): 555–561. https://doi.org/10.1016/S0008-8846(00)00505-6.
Voigt, W. 1928. Lehrbuch der Kristallphysik. Leipzig, Germany: B. G. Teubner.
Wang, Q., H. Manzano, Y. Guo, I. Lopez-Arbeloa, and X. Shen. 2015. “Hydration mechanism of reactive and passive dicalcium silicate polymorphs from molecular simulations.” J. Phys. Chem. C 119 (34): 19869–19875. https://doi.org/10.1021/acs.jpcc.5b05257.
Young, R. A. 1993. The rietveld method, Vol. 5, 132–166. Cambridge, UK: International Union of Crystallography.
Young, R. A., A. Sakthivel, T. S. Moss, and C. O. Paiva-Santos. 1995. “DBWS-9411—An upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers.” J. Appl. Crystallogr. 28 (3): 366–367. https://doi.org/10.1107/S0021889895002160.
Zanjani Zadeh, V., and C. P. Bobko. 2014. “Multiscale modeling of elastic properties of sustainable concretes by microstructural-based micromechanics.” J. Compos. 2014: 1–10. https://doi.org/10.1155/2014/758626.
Zhou, J., J. Huang, and L. Jin. 2015. “Nano–micro modelling of mechanical properties of cement paste based on molecular dynamics.” Adv. Cem. Res. 28 (2): 73–83. https://doi.org/10.1680/adcr.15.00048.
Zhou, M. 2003. “A new look at the atomic level virial stress: on continuum-molecular system equivalence.” Proc. R. Soc. London A 459 (2037): 2347–2392. https://doi.org/10.1098/rspa.2003.1127.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 4April 2019

History

Received: Nov 14, 2017
Accepted: Sep 11, 2018
Published online: Jan 29, 2019
Published in print: Apr 1, 2019
Discussion open until: Jun 29, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Nilanjan Mitra [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (corresponding author). Email: [email protected]
Prodip Sarkar [email protected]
Ph.D. Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Email: [email protected]
Ph.D. Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0003-4941-0572. Email: [email protected]
Subhasish Basu Majumder [email protected]
Professor, Material Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share