Technical Papers
Feb 14, 2019

Real-Time Nonlinear Solid Mechanics Computations for Fast Inverse Material Parameter Optimization in Cardiac Mechanics

Publication: Journal of Engineering Mechanics
Volume 145, Issue 4

Abstract

The aim of this work is to significantly accelerate the process of parameter optimization of cardiac mechanics problems. This is achieved by coupling a reduced-order method, called the proper orthogonal decomposition with interpolation (PODI), with the frequently used Levenberg-Marquardt method (LVM). The PODI method involves a database to generate solution fields of the problem at hand. This database consists of precomputed solution fields such as displacement, strain, and stress fields that are associated with a parametric domain. When coupling PODI with LVM, the parametric domain of the database coincides with the parametric bounds of LVM. For each optimization step, the solutions corresponding to the updated set of parameters and their perturbations can then be obtained by using these data sets for the purpose of interpolation in the low-dimensional space. Two cardiac problems are investigated to compare the PODI-LVM method with a conventional approach where LVM makes use of full-scale simulations to compute the update of the parameters. Here, this is the element-free Galerkin method. In the first example, the diastolic filling of a left-ventricle heart model is considered and in the second one, a biventricle model is studied. In both cases, optimized values of the parameters of the cardiac constitutive equation are found that match the given diastolic pressure-volume curve. The PODI-LVM optimization procedure results in a computation speed-up factor of 900 on a standard desktop computer at high levels of accuracy.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research has been supported by the National Research Foundation (NRF) of South Africa (Grant Nos. 104839 and 105858). Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

References

Amsallem, D., and C. Farhat. 2008. “An interpolation method for adapting reduced-order models and application to aeroelasticity.” AIAA J. 46 (7): 1803–1813. https://doi.org/10.2514/1.35374.
Barbic, J., and D. James. 2005. “Real-time subspace integration for St. Venant-Kirchhoff deformable models.” ACM Trans. Graphics 24 (3): 982–990. https://doi.org/10.1145/1073204.1073300.
Boulakia, M., E. Schenone, and J.-F. Gerbeau. 2012. “Reduced-order modeling for cardiac electrophysiology application to parameter identification.” Int. J. Numer. Methods Biomed. Eng. 28 (6–7): 727–744. https://doi.org/10.1002/cnm.2465.
Chinesta, F., R. Keunings, and A. Leygue. 2014. The proper generalized decomposition for advanced numerical simulations. Cham, Switzerland: Springer.
Choi, Y., D. Amsallem, and C. Farhat. 2015. “Gradient-based constrained optimization using a database of linear reduced-order models.” Preprint, submitted June 25, 2015. https://arxiv.org/abs/1506.07849.
Cui, T., Y. M. Marzouk, and K. E. Willcox. 2015. “Data-driven model reduction for the Bayesian solution of inverse problems.” Int. J. Numer. Methods Eng. 102 (5): 966–990. https://doi.org/10.1002/nme.4748.
Dihlmann, M. A., and B. Haasdonk. 2015. “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems.” Comput. Optim. Appl. 60 (3): 753–787. https://doi.org/10.1007/s10589-014-9697-1.
Dolbow, J., and T. Belytschko. 1998. “An introduction to programming the meshless element-free Galerkin method.” Arch. Comput. Methods Eng. 5 (3): 207–241. https://doi.org/10.1007/BF02897874.
Falkiewicz, N. J., and C. E. S. Cesnik. 2011. “Proper orthogonal decomposition for reduced-order thermal solution in hypersonic aerothermielastic simulation.” AIAA J. 49 (5): 994–1009. https://doi.org/10.2514/1.J050701.
Forrester, A. I. J., and A. J. Keane. 2009. “Recent advances in surrogate-based optimization.” Prog. Aerosp. Sci. 45 (1–3): 50–79. https://doi.org/10.1016/j.paerosci.2008.11.001.
Gavin, H. P. 2013. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Durham, NC: Dept. of Civil and Environmental Engineering, Duke Univ.
Ghnatios, C., F. Masson, A. Huerta, A. Leygue, E. Cueto, and F. Chinesta. 2012. “Proper generalized decomposition based dynamic data-driven control of thermal processes.” Comput. Methods Appl. Mech. Eng. 213–216: 29–41. https://doi.org/10.1016/j.cma.2011.11.018.
Goetz, W. A., E. Lansac, H.-S. Lim, P. A. Weber, and C. M. G. Duran. 2005. “Left ventricular endocardial longitudinal and transverse changes during isovolumic contraction and relaxation: A challenge.” Am. J. Physiol.: Heart Circulatory Physiol. 289 (1): H196–H201.
Golsorkhi, N. A., and H. A. Tehrani. 2014. “Levenberg-Marquardt method for solving the inverse heat transfer problems.” J. Math. Comput. Sci. 13 (4): 300–310. https://doi.org/10.22436/jmcs.013.04.03.
Greyson, C. R. 2008. “Pathophysiology of right ventricular failure.” Supplement, Crit. Care Med. 36 (S1): S57–S65. https://doi.org/10.1097/01.CCM.0000296265.52518.70.
Guyon, F., and R. L. Riche. 2000. Least squares parameter estimation and the Levenberg-Marquardt algorithm: Deterministic analysis, sensitivities and numerical experiments. Mont-Saint-Aignan, France: Institut National des Sciences Appliquées.
Hesthaven, J. S., G. Rozza, and B. Stamm. 2015. Certified reduced basis methods for parametrized partial differential equations. Cham, Switzerland: Springer.
Ho, V. B., and G. P. Reddy. 2010. Cardiovascular imaging. 1st ed. Philadelphia: Elsevier.
Holmes, P., J. L. Lumley, and G. Berkooz. 1996. Turbulence, coherent, structures, dynamical systems and symmetry. 1st ed. New York: Cambridge University Press.
Holmes, P., J. L. Lumley, G. Berkooz, and C. W. Rowley. 2012. Turbulence, coherent structures, dynamic systems and symmetry. 2nd ed. Cambridge, UK: Cambridge University Press.
Hudsmith, L. E., S. E. Petersen, J. M. Francis, M. D. Robson, and S. Neubauer. 2005. “Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging.” J. Cardiovasc. Magn. Reson. 7 (5): 775–782. https://doi.org/10.1080/10976640500295516.
Iapichino, L., S. Ulbrich, and S. Volkwein. 2017. “Multiobjective PDE-constrained optimization using the reduced-basis method.” Adv. Comput. Math. 43 (5): 945–972. https://doi.org/10.1007/s10444-016-9512-x.
Iuliano, E., and D. Quagliarella. 2013. “Proper orthogonal decomposition, surrogate modelling and evolutionary optimization in aerodynamic design.” Comput. Fluids 84: 327–350. https://doi.org/10.1016/j.compfluid.2013.06.007.
Kerschen, G., J.-C. Golinval, A. Vakakis, and L. Bergman. 2005. “The method of proper orthogonal decomposition for dynamical characterisation and order reduction of mechanical systems: An overview.” Nonlinear Dyn. 41 (1–3): 147–169. https://doi.org/10.1007/s11071-005-2803-2.
Kjaergaard, J., C. L. Petersen, A. Kjaer, B. K. Schaadt, J. K. Oh, and C. Hassager. 2006. “Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI.” Eur. J. Echocardiography 7 (6): 430–438. https://doi.org/10.1016/j.euje.2005.10.009.
Lafortune, P., R. Arís, M. Vázquez, and G. Houzeaux. 2012. “Coupled electromechanical model of the heart: Parallel finite element formulation.” Int. J. Numer. Methods Biomed. Eng. 28 (1): 72–86. https://doi.org/10.1002/cnm.1494.
Lee, L. C., M. Genet, A. B. Dang, L. Ge, J. M. Guccione, and M. B. Ratcliffe. 2014. “Applications of computational modeling in cardiac surgery.” J. Cardiac Surg. 29 (3): 293–302. https://doi.org/10.1111/jocs.12332.
Legner, D., S. Skatulla, J. MBewu, R. R. Rama, B. D. Reddy, C. Sansour, N. H. Davies, and T. Franz. 2014. “Studying the influence of hydrogel injections into the infarcted left ventricle using the element-free Galerkin method.” Int. J. Numer. Methods Biomed. Eng. 30 (3): 416–429. https://doi.org/10.1002/cnm.2610.
Li, H., Z. Luo, and J. Chen. 2011. “Numerical simulation based on pod for two-dimensional solute transport problems.” Appl. Math. Modell. 35 (5): 2489–2498. https://doi.org/10.1016/j.apm.2010.11.064.
Lin, W. Z., Y. J. Zhang, and E. P. Li. 2008. “Proper orthogonal decomposition in the generation of reduced order models for interconnects.” IEEE Trans. Adv. Packag. 31 (3): 627–636. https://doi.org/10.1109/TADVP.2008.927820.
Linte, C. A., M. Wierzbicki, T. M. Peters, and A. Samani. 2008. “Towards a biomechanics-based technique for assessing myocardial contractility: An inverse problem approach.” Comput. Methods Biomech. Biomed. Eng. 11 (3): 243–255. https://doi.org/10.1080/10255840701704553.
Ly, H. V., and H. T. Tran. 2001. “Modeling and control of physical processes using proper orthogonal decomposition.” Math. Comput. Modell. 33 (1–3): 223–236. https://doi.org/10.1016/S0895-7177(00)00240-5.
Manzoni, A., A. Quarteroni, and G. Rozza. 2012. “Shape optimization for viscous flows by reduced basis methods and free-form deformation.” Int. J. Numer. Methods Fluids 70 (5): 646–670. https://doi.org/10.1002/fld.2712.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
Moulton, M. J., L. L. Creswell, R. L. Actis, K. W. Myers, M. W. Vannier, B. A. Szabo, and M. K. Pasque. 1995. “An inverse approach to determining myocardial material properties.” J. Biomech. 28 (8): 935–948. https://doi.org/10.1016/0021-9290(94)00144-S.
My-Ha, D., K. M. Lim, B. C. Khoo, and K. E. Willcox. 2007. “Real-time optimization using proper orthogonal decomposition: Free surface shape prediction due to underwater bubble dynamics.” Comput. Fluids 36 (3): 499–512. https://doi.org/10.1016/j.compfluid.2006.01.016.
Nadal, E., F. Chinesta, P. Díez, F. Fuenmayor, and F. Denia. 2015. “Real time parameter identification and solution reconstruction from experimental data using the proper generalized decomposition.” Comput. Methods Appl. Mech. Eng. 296: 113–128. https://doi.org/10.1016/j.cma.2015.07.020.
Niederer, S., and N. Smith. 2009. “The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: A computational modeling analysis.” PLoS Comput. Biol. 5 (4): e1000371. https://doi.org/10.1371/journal.pcbi.1000371.
Oikawa, M., et al. 2005. “Increased [18F] fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol.” J. Am. Coll. Cardiol. 45 (11): 1849–1855. https://doi.org/10.1016/j.jacc.2005.02.065.
Palit, A., S. K. Bhudia, T. N. Arvanitis, G. A. Turley, and M. A. Williams. 2015. “Computational modelling of left-ventricular diastolic mechanics: Effect of fibre orientation and right-ventricle topology.” J. Biomech. 48 (4): 604–612. https://doi.org/10.1016/j.jbiomech.2014.12.054.
Peng, S. H., and W. V. Chang. 1997. “A compressible approach in finite element analysis of rubber-elastic materials.” Comput. Struct. 62 (3): 573–593. https://doi.org/10.1016/S0045-7949(96)00195-2.
Rama, R. R., and S. Skatulla. 2018a. “Towards real-time cardiac mechanics modelling with patient-specific heart anatomies.” Comput. Methods Appl. Mech. Eng. 328: 47–74. https://doi.org/10.1016/j.cma.2017.08.015.
Rama, R. R., and S. Skatulla. 2018b. “Towards real-time modelling of passive and active behaviour of the human heart using PODI-based model reduction.” Comput. Struct. https://doi.org/10.1016/j.compstruc.2018.01.002. in press.
Rama, R. R., S. Skatulla, and C. Sansour. 2016. “Real-time modelling of diastolic filling of the heart using the proper orthogonal decomposition with interpolation.” Int. J. Solids Struct. 96: 409–422. https://doi.org/10.1016/j.ijsolstr.2016.04.003.
Rijcken, J., P. H. M. Bovendeerd, A. J. G. Schoofs, D. H. Van Campent, and T. Arts. 1997. “Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection.” J. Biomech. 30 (10): 1041–1049. https://doi.org/10.1114/1.147.
Rohmer, D., A. Sitek, and G. T. Gullberg. 2007. “Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data.” Invest. Radiol. 42 (11): 777–789. https://doi.org/10.1097/RLI.0b013e3181238330.
Rozza, G., D. B. P. Huynh, and A. T. Patera. 2008. “Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations.” Arch. Comput. Methods Eng. 15 (3): 229–275. https://doi.org/10.1007/s11831-008-9019-9.
Sack, K., S. Skatulla, and C. Sansour. 2016. “Biological tissue mechanics with fibres modelled as one-dimensional Cosserat continua: Applications to cardiac tissue.” Int. J. Solids Struct. 81: 84–94. https://doi.org/10.1016/j.ijsolstr.2015.11.009.
Sandstede, J., C. Lipke, M. Beer, S. Hofmann, T. Pabst, W. Kenn, S. Neubauer, and D. Hahn. 2000. “Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging.” Eur. Radiol. 10 (3): 438–442. https://doi.org/10.1007/s003300050072.
Simmons, L. A., A. G. Gillin, and R. W. Jeremy. 2002. “Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy.” Am. J. Physiol.: Heart Circulatory Physiol. 283 (4): H1627–H1633. https://doi.org/10.1152/ajpheart.00966.2001.
Sirovich, L. 1987. “Turbulence and the dynamics of coherent structures.” Appl. Math. 45 (3): 561–582.
Sommer, G., A. J. Schriefl, M. Andrä, M. Sacherer, C. Viertler, H. Wolinski, and G. A. Holzapfel. 2015. “Biomechanical properties and microstructure of human ventricular myocardium.” Acta Biomaterialia 24: 172–192. https://doi.org/10.1016/j.actbio.2015.06.031.
Stiftinger, M. 1995. “Calculation of the Jacobian matrix.” Institute for Microelectronics, Technische Universitat Wien. Accessed December 10, 2018. http://www.iue.tuwien.ac.at/phd/khalil/node14.html.
Stolzmann, P., H. Scheffel, P. T. Trindade, A. R. Plass, L. Husmann, S. Leschka, M. Genoni, B. Marincek, P. A. Kaufmann, and H. Alkadhi. 2008. “Left ventricular and left atrial dimensions and volumes: Comparison between dual-source CT and echocardiography.” Invest. Radiol. 43 (5): 284–289. https://doi.org/10.1097/RLI.0b013e3181626853.
Transtrum, M. K., and J. P. Sethna. 2012. “Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization.” Preprint, submitted January 27, 2012. https://arxiv.org/abs/1201.5885.
Usyk, T. P., and A. D. McCulloch. 2002. “Computational method for soft tissue biomechanics.” Biomech. Soft Tissue Cardiovasc. Syst. 441: 273–342.
van Doren, J. F. M., R. Markovinović, and J.-D. Jansen. 2006. “Reduced-order optimal control of water flooding using proper orthogonal decomposition.” Comput. Geosci. 10 (1): 137–158. https://doi.org/10.1007/s10596-005-9014-2.
Vetter, F. J., and A. D. McCulloch. 2000. “Three-dimensional stress and strain in passive rabbit left ventricle: A model study.” Ann. Biomed. Eng. 28 (7): 781–792. https://doi.org/10.1114/1.1289469.
Walker, J. C., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. Saloner, and J. M. Guccione. 2005. “MRI-based finite-element analysis of left ventricular aneurysm.” Am. J. Physiol.: Heart Circulatory Physiol. 289 (2): H692–H700.
Winton, C., J. Pettway, C. T. Kelley, S. Howington, and O. J. Eslinger. 2011. “Application of proper orthogonal decomposition (POD) to inverse problems in saturated groundwater flow.” Adv. Water Resour. 34 (12): 1519–1526. https://doi.org/10.1016/j.advwatres.2011.09.007.
Wong, J., and E. Kuhl. 2012. “Generating fibre orientation maps in human heart models using Poisson interpolation.” Comput. Methods Biomech. Biomed. Eng. 17 (11): 1217–1226. https://doi.org/10.1080/10255842.2012.739167.
Xu, Y.-L., and Y. Xia. 2012. Structural health monitoring of long-span suspension bridges. 1st ed. London: CRC Press.
Yin, F. C., C. C. Chan, and R. M. Judd. 1996. “Compressibility of perfused passive myocardium.” Am. J. Physiol.: Heart Circulatory Physiol. 271 (5): H1864–H1870.
Yiu, S. F., M. Enriquez-Sarano, C. Tribouilloy, J. B. Seward, and A. J. Tajik. 2000. “Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study.” Circulation 102 (12): 1400–1406. https://doi.org/10.1161/01.CIR.102.12.1400.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 4April 2019

History

Received: Apr 26, 2018
Accepted: Aug 20, 2018
Published online: Feb 14, 2019
Published in print: Apr 1, 2019
Discussion open until: Jul 14, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Fellow, Centre for Research in Computational and Applied Mechanics, Univ. of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa. ORCID: https://orcid.org/0000-0003-2356-8646
Sebastian Skatulla [email protected]
Associate Professor, Dept. of Civil Engineering, Univ. of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share