Technical Papers
Dec 26, 2018

Mechanical Property Evaluation of Composites Based on n+1 Phase Model and Mori–Tanaka Theory

Publication: Journal of Engineering Mechanics
Volume 145, Issue 3

Abstract

A new micromechanical model is developed for the prediction of the elastic properties of composite materials with embedded spherical multicoated inhomogeneities of various sizes and types. The model is based on the n+1 phase model and the Mori–Tanaka homogenization. The model is capable of treating each coated spherical inhomogeneity individually, including specific attributes such as particle size and multiple mechanical phases. The accuracy of the model is assessed by comparing it with classical bounds and an analytical model from the literature. The results of the model are also compared with experimental data for the case of a three-phase composite material. The influence of mechanical properties and volume fraction of various constituents on the bulk elastic properties is also studied for the case of multiphase complex materials.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bardella, L., and F. Genna. 2001. “On the elastic behaviour of syntactic foams.” Int. J. Solids Struct. 38 (40–41): 7235–7260. https://doi.org/10.1016/S0020-7683(00)00228-6.
Benveniste, Y. 1987. “A new approach to the application of Mori-Tanaka’s theory in composite materials.” Mech. Mater. 6 (2): 147–157. https://doi.org/10.1016/0167-6636(87)90005-6.
Berbenni, S., and M. Cherkaoui. 2010. “Homogenization of multicoated inclusion-reinforced linear elastic composites with eigenstrains: Application to thermoelastic behaviour.” Philos. Mag. 90 (22): 3003–3026. https://doi.org/10.1080/14786431003767033.
Bonfoh, N., M. Coulibaly, and H. Sabar. 2014. “Effective properties of elastic composite materials with multi-coated reinforcements: A new micromechanical modelling and applications.” Compos. Struct. 115: 111–119. https://doi.org/10.1016/j.compstruct.2014.04.011.
Bonfoh, N., V. Hounkpati, and H. Sabar. 2012. “New micromechanical approach of the coated inclusion problem: Exact solution and applications.” Comput. Mater. Sci. 62: 175–183. https://doi.org/10.1016/j.commatsci.2012.05.007.
Bornet, M. 1996. “A generalized pattern-based self-consistent scheme.” Comput. Mater. Sci. 5 (1–3): 17–31. https://doi.org/10.1016/0927-0256(95)00054-2.
Bornet, M., C. Stolz, and A. Zaoui. 1996. “Morphologically representative pattern-based bounding in elasticity.” J. Mech. Phys. Solids 44 (3): 307–331. https://doi.org/10.1016/0022-5096(95)00083-6.
Cherkaoui, M., H. Sabar, and M. Berveiller. 1994. “Micromechanical approach of the coated inclusion problem and applications to composite materials.” J. Eng. Mater. Technol. 116 (3): 274–278. https://doi.org/10.1115/1.2904286.
Cherkaoui, M., H. Sabar, and M. Berveiller. 1995. “Elastic composites with coated reinforcements: A micromechanical approach for nonhomothetic topology.” Int. J. Eng. Sci. 33 (6): 829–843. https://doi.org/10.1016/0020-7225(94)00108-V.
Christensen, R. M. 1990. “A critical evaluation for a class of micro-mechanics models.” J. Mech. Phys. Solids 38 (3): 379–404. https://doi.org/10.1016/0022-5096(90)90005-O.
Christensen, R. M., and K. H. Lo. 1979. “Solutions for effective shear properties in three phase sphere and cylinder models.” J. Mech. Phys. Solids 27 (4): 315–330. https://doi.org/10.1016/0022-5096(79)90032-2.
Christensen, R. M., H. Schantz, and J. Shapiro. 1992. “On the range of validity of the Mori-Tanaka method.” J. Mech. Phys. Solids 40 (1): 69–73. https://doi.org/10.1016/0022-5096(92)90240-3.
Dederichs, P. H., and R. Zeller. 1973. “Variational treatment of the elastic constants of disordered materials.” Z. Phys. A: Hadrons Nucl. 259 (2): 103–116. https://doi.org/10.1007/BF01392841.
Dinzart, F., H. Sabar, and S. Berbenni. 2016. “Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem.” Int. J. Eng. Sci. 100: 136–151. https://doi.org/10.1016/j.ijengsci.2015.12.001.
Do, D., D. Hoxha, and T. Bui. 2015. “Assessment of mechanical properties of interphase in composite like geomaterials by ultrasonic measurement and the extended multi-inclusion model.” J. Appl. Mech. 82 (3): 031001. https://doi.org/10.1115/1.4029487.
Duan, H. L., J. Wang, Z. P. Huang, and B. L. Karihaloo. 2005. “Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress.” J. Mech. Phys. Solids 53 (7): 1574–1596. https://doi.org/10.1016/j.jmps.2005.02.009.
Eshelby, J. D. 1957. “The determination of the elastic field of an ellipsoidal inclusion, and related problems.” Proc. R. Soc. London, Ser. A 241 (1226): 376–396. https://doi.org/10.1098/rspa.1957.0133.
Ferrari, M. 1991. “Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory.” Mech. Mater. 11 (3): 251–256. https://doi.org/10.1016/0167-6636(91)90006-L.
Haller, X., Y. Monerie, S. Pagano, and P. Vincent. 2016. “Elastic behavior of porous media with spherical nanovoids.” Int. J. Solids Struct. 84: 99–109. https://doi.org/10.1016/j.ijsolstr.2016.01.018.
Hashin, Z. 1962. “The elastic moduli of heterogeneous materials.” J. Appl. Mech. 29 (1): 143–150. https://doi.org/10.1115/1.3636446.
Hashin, Z., and S. Shtrikman. 1961. “Note on a variational approach of the theory of composite elastic materials.” J. Franklin Inst. 271 (4): 336–341. https://doi.org/10.1016/0016-0032(61)90032-1.
Hashin, Z., and S. Shtrikman. 1962a. “On some variational principles in anisotropic and nonhomogeneous elasticity.” J. Mech. Phys. Solids 10 (4): 335–342. https://doi.org/10.1016/0022-5096(62)90004-2.
Hashin, Z., and S. Shtrikman. 1962b. “A variational approach to the theory of the elastic behaviour of polycrystals.” J. Mech. Phys. Solids 10 (4): 343–352. https://doi.org/10.1016/0022-5096(62)90005-4.
Hashin, Z., and S. Shtrikman. 1963. “A variational approach to the theory of the elastic behaviour of multiphase materials.” J. Mech. Phys. Solids 11 (2): 127–140. https://doi.org/10.1016/0022-5096(63)90060-7.
Herve, E., and A. Zaoui. 1993. “n-Layered inclusion-based micromechanical modelling.” Int. J. Eng. Sci. 31 (1): 1–10. https://doi.org/10.1016/0020-7225(93)90059-4.
Hill, R. 1965. “A self-consistent mechanics of composite materials.” J. Mech. Phys. Solids 13 (4): 213–222. https://doi.org/10.1016/0022-5096(65)90010-4.
Hori, M., and S. Nemat-Nasser. 1993. “Double-inclusion model and overall moduli of multi-phase composites.” Mech. Mater. 14 (3): 189–206. https://doi.org/10.1016/0167-6636(93)90066-Z.
Huang, J. S., and L. J. Gibson. 1993. “Elastic moduli of a composite of hollow spheres in a matrix.” J. Mech. Phys. Solids 41 (1): 55–75. https://doi.org/10.1016/0022-5096(93)90063-L.
Khanna, R., K. S. Katti, and D. R. Katti. 2009. “Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials.” J. Eng. Mech. 135 (5): 468–478. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000002.
Law, N. 1975. “On interfacial discontinuities in elastic composites.” J. Elast. 5 (3–4): 227–235.
Li, G., Y. Zhao, and S. Pang. 1999. “Four-phase sphere modelling of effective bulk modulus of concrete.” Cem. Concr. Res. 29 (6): 839–845. https://doi.org/10.1016/S0008-8846(99)00040-X.
Lipinski, P., E. Barhdadi, and M. Cherkaoui. 2006. “Micromechanical modelling of an arbitrary ellipsoidal multi-coated inclusion.” Philos. Mag. 86 (10): 1305–1326. https://doi.org/10.1080/14786430500343868.
Love, A. E. H. 1944. A treatise on the mathematical theory of elasticity. New York: Dover.
Majewski, M., M. Kursa, P. Holobut, and K. Kowalczyk. 2017. “Micromechanical and numerical analysis of packing and size effects in elastic particulate composites.” Composites Part B 124: 158–174. https://doi.org/10.1016/j.compositesb.2017.05.004.
Marcadon, V., E. Herve, and A. Zaoui. 2007. “Micromechanical modeling of packing and size effects in particulate composites.” Int. J. Solids Struct. 44 (25–26): 8213–8228. https://doi.org/10.1016/j.ijsolstr.2007.06.008.
Mori, T., and K. Tanaka. 1973. “Average stresses in the matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Nadeau, J. C. 2002. “Water–cement ratio gradients in mortars and corresponding effective elastic properties.” Cem. Concr. Res. 32 (3): 481–490. https://doi.org/10.1016/S0008-8846(01)00710-4.
Nadeau, J. C. 2003. “A multi-scale model for effective moduli of concrete incorporating ITZ water–cement ratio gradients in mortars, aggregate size distributions, and entrapped voids.” Cem. Concr. Res. 33 (1): 103–113. https://doi.org/10.1016/S0008-8846(02)00931-6.
Nilsen, A. U., and P. J. M. Monterio. 1993. “Concrete: A three phase material.” Cem. Concr. Res. 23 (1): 147–151. https://doi.org/10.1016/0008-8846(93)90145-Y.
Qu, J., and M. Cherkaoui. 2006. Fundamentals of micromechanics of solids. Hoboken, NJ: Wiley.
Sarvestani, A. S. 2003. “On the overall elastic moduli of composites with spherical coated fillers.” Int. J. Solids Struct. 40 (26): 7553–7566. https://doi.org/10.1016/S0020-7683(03)00299-3.
Scrivener, K. L., A. L. Crumbie, and P. Laugesen. 2004. “The interfacial transition zone (ITZ) between cement paste and aggregate in concrete.” Interface Sci. 12 (4): 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c.
Shi, C., H. Fan, and S. Li. 2015. “Interphase model for effective moduli of nanoparticle-reinforced composites.” J. Eng. Mech. 141 (12): 04015052. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000958.
Stolz, C., and A. Zaoui. 1991. “Analyse Morphologique et approches variationnelles du comportement d’un milieu élastique hétérogène.” C.R. Acad. Sci., Ser. II 312: 143–150.
Sun, Z., E. J. Garboczi, and S. P. Shah. 2007. “Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory, and numerical simulation.” Cem. Concr. Compos. 29 (1): 22–38. https://doi.org/10.1016/j.cemconcomp.2006.07.020.
Torralba, J. M., F. Velasco, C. E. Costa, I. Vergara, and D. Cáceres. 2002. “Mechanical behaviour of the interphase between matrix and reinforcement of Al 2014 matrix composites reinforced with (Ni3Al)p.” Composites Part A 33 (3): 427–434. https://doi.org/10.1016/S1359-835X(01)00104-X.
Walpole, L. J. 1978. “A coated inclusion in an elastic medium.” Math. Proc. Cambridge Philos. Soc. 83 (3): 495–506. https://doi.org/10.1017/S0305004100054773.
Weng, G. J. 1984. “Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions.” Int. J. Eng. Sci. 22 (7): 845–856. https://doi.org/10.1016/0020-7225(84)90033-8.
Weng, G. J. 1990. “The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds.” Int. J. Eng. Sci. 28 (11): 1111–1120. https://doi.org/10.1016/0020-7225(90)90111-U.
Xi, Y. 1996. “Representative volumes of composite materials.” J. Eng. Mech. 122 (12): 1159–1167. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:12(1159).
Zaoui, A. 2002. “Continuum micromechanics: Survey.” J. Eng. Mech. 128 (8): 808–816. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808).

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 3March 2019

History

Received: Mar 23, 2018
Accepted: Aug 13, 2018
Published online: Dec 26, 2018
Published in print: Mar 1, 2019
Discussion open until: May 26, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Surendra Beniwal [email protected]
Project Scientist, Dept. of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. Email: [email protected]
Ph.D. Student, Dept. of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India (corresponding author). ORCID: https://orcid.org/0000-0003-2710-3301. Email: [email protected]
Shashank Bishnoi [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share