Technical Papers
Nov 20, 2018

Numerical Simulation of the Dynamic Frictional Contact Problem for Crack Slip Based on the Multidimensional Space Method

Publication: Journal of Engineering Mechanics
Volume 145, Issue 2

Abstract

The extended finite-element method (XFEM) was proposed to simulate the problem of crack growth without any remeshing. In this paper, the penalty function method is introduced to deal with the contact constraints, and the trial-and-error method is employed to investigate the converged contact state. The monitoring points seed on the interface to detect the contact states of the cracks and to interpolate the displacement of the grid node. The formulations of the dynamic frictional contact problem for crack slip are established based on the multidimensional space method. In this proposed method, the implicit Newmark time integration scheme is applied to deal with the problems of dynamic frictional contact. Moreover, a numerical case is illustrated to verify the precision and robustness of the proposed method. It is found that the numerical results obtained from proposed method agree well with those obtained from the standard finite-element method.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Nos. 51679017, 51839009, and 51809198), Project 973 (Grant No. 2014CB046903), the Fundamental Research Funds for the Central Universities (No. 2042018kf0008), and the Natural Science Foundation Project of CQ CSTC (No. cstc2013kjrc-ljrccj0001).

References

Allix, O. 2013. “The bounded rate concept: A framework to deal with objective failure predictions in dynamic within a local constitutive model.” Int. J. Damage Mech. 22 (6): 808–828. https://doi.org/10.1177/1056789512468355.
Arakawa, K. 2016. “Dynamic sliding friction and similarity with Stokes’ law.” Tribol. Int. 94 (Feb): 77–81. https://doi.org/10.1016/j.triboint.2015.08.007.
Aronov, V., A. F. D’souza, S. Kalpakjian, and I. Shareef. 1983. “Experimental investigation of the effect of system rigidity on wear and friction-induced vibrations.” J. Tribol. 105 (2): 206–211.
Attigui, M., and C. Petit. 1997. “Mixed-mode separation in dynamic fracture mechanics: New path independent integrals.” Int. J. Fract. 84 (1): 19–36. https://doi.org/10.1023/A:1007358701493.
Babuška, I., and J. M. Melenk. 1997. “The partition of unity method.” Int. J. Numer. Methods Eng. 40 (4): 727–758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4%3C727::AID-NME86%3E3.0.CO;2-N.
Barbero, M., G. Barla, and A. Zaninetti. 1996. “Dynamic shear strength of rock joints subjected to impulse loading.” Int. J. Rock Mech. Mining Sci. Geomech. Abstr. Pergamon 33 (2): 141–151. https://doi.org/10.1016/0148-9062(95)00049-6.
Barboteu, M., K. Bartosz, and P. Kalita. 2015. “A dynamic viscoelastic contact problem with normal compliance, finite penetration and nonmonotone slip rate dependent friction.” Nonlinear Anal. Real World Appl. 22 (Apr): 452–472. https://doi.org/10.1016/j.nonrwa.2014.08.009.
Baumberger, T., P. Berthoud, and C. Caroli. 1999. “Physical analysis of the state-and rate-dependent friction law. II: Dynamic friction.” Phy. Rev. B 60 (6): 3928–3939. https://doi.org/10.1103/PhysRevB.60.3928.
Bayram, Y. B., and H. F. Nied. 2000. “Enriched finite element-penalty function method for modeling interface cracks with contact.” Eng. Fract. Mech. 65 (5): 541–557. https://doi.org/10.1016/S0013-7944(99)00134-4.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Methods Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Belytschko, T., H. Chen, J. Xu, and G. Zi. 2003. “Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment.” Int. J. Numer. Methods Eng. 58 (12): 1873–1905. https://doi.org/10.1002/nme.941.
Belytschko, T., and J. I. Lin. 1987. “A three-dimensional impact-penetration algorithm with erosion.” Int. J. Impact Eng. 5 (1): 111–127. https://doi.org/10.1016/0734-743X(87)90033-9.
Bi, J., and X. P. Zhou. 2017. “Numerical simulation of kinetic friction in the fracture process of rocks in the framework of general particle dynamics.” Comput. Geotech. 83 (Mar): 1–15. https://doi.org/10.1016/j.compgeo.2016.10.019.
Campos, L. T., J. T. Oden, and N. Kikuchi. 1982. “A numerical analysis of a class of contact problems with friction in elastostatics.” Comput. Methods Appl. Mech. Eng. 34 (1): 821–845. https://doi.org/10.1016/0045-7825(82)90090-1.
Chaudhary, A. B., and K. J. Bathe. 1986. “A solution method for static and dynamic analysis of three-dimensional contact problems with friction.” Comput. Struct. 24 (6): 855–873. https://doi.org/10.1016/0045-7949(86)90294-4.
Cheng, H., and X. P. Zhou. 2015. “A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method.” Int. J. Damage Mech. 24 (6): 859–890. https://doi.org/10.1177/1056789514555149.
Cheng, H., and X. P. Zhou. 2018. “New technique for frictional contact on crack slip in the extended finite-element method framework.” J. Eng. Mech. 144 (8): 04018059. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001476.
Cocou, M. 2002. “Existence of solutions of a dynamic Signorini’s problem with nonlocal friction in viscoelasticity.” Zeitschrift für angewandte Mathematik und Physik Zamp 53 (6): 1099–1109. https://doi.org/10.1007/PL00012615.
Dolbow, J., N. Moës, and T. Belytschko. 2001. “An extended finite element method for modeling crack growth with frictional contact.” Comput. Methods Appl. Mech. Eng. 190 (51): 6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2.
Elguedj, T., A. Gravouil, and A. Combescure. 2007. “A mixed augmented Lagrangian-extended finite element method for modelling elastic–plastic fatigue crack growth with unilateral contact.” Int. J. Numer. Methods Eng. 71 (13): 1569–1597. https://doi.org/10.1002/nme.2002.
Erdogan, F., and G. Sih. 1963. “On the crack extension in plates under plane loading and transverse shear.” J. Basic. Eng. 85 (4): 519–525. https://doi.org/10.1115/1.3656897.
Fleming, M., Y. A. Chu, B. Moran, T. Belytschko, and Y. Y. Lu. 1997. “Enriched element-free Galerkin methods for crack tip fields.” Int. J. Numer. Methods Eng. 40 (8): 1483–1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6.
Freund, L. 1990. Dynamic fracture mechanics. Cambridge, UK: Cambridge University Press.
Freund, L., and A. Douglas. 1982. “The influence of inertia on elastic-plastic antiplane-shear crack growth.” J. Mech. Phys. Solids 30 (1): 59–74. https://doi.org/10.1016/0022-5096(82)90013-8.
Giner, E., M. Tur, J. E. Tarancón, and F. J. Fuenmayor. 2010. “Crack face contact in X-FEM using a segment-to-segment approach.” Int. J. Numer. Methods Eng. 82 (11): 1424–1449. https://doi.org/10.1002/nme.2813.
Hassani, R., P. Hild, I. R. Ionescu, and N. D. Sakki. 2003. “A mixed finite element method and solution multiplicity for Coulomb frictional contact.” Comput. Methods Appl. Mech. Eng. 192 (41): 4517–4531. https://doi.org/10.1016/S0045-7825(03)00419-5.
Howard, I., S. Jia, and J. Wang. 2001. “The dynamic modelling of a spur gear in mesh including friction and a crack.” Mech. Syst. Signal Process. 15 (5): 831–853. https://doi.org/10.1006/mssp.2001.1414.
James, M. B., and J. M. Newton. 1985. “The influence of surface topography on the dynamic friction between acetylsalicyclic acid compacts and steel.” J. Mater. Sci. 20 (4): 1333–1340. https://doi.org/10.1007/BF01026329.
Kana, D. D., D. J. Fox, and S. M. Hsiung. 1996. “Interlock/friction model for dynamic shear response in natural jointed rock.” Int. J. Rock Mech. Mining Sci. Geomech Abstr. Pergamon 33 (4): 371–386. https://doi.org/10.1016/0148-9062(95)00073-9.
Kanto, Y., and G. Yagawa. 1990. “A dynamic contact buckling analysis by the penalty finite element method.” Int. J. Numer. Methods Eng. 29 (4): 755–774. https://doi.org/10.1002/nme.1620290406.
Kim, T. Y., J. Dolbow, and T. Laursen. 2007. “A mortared finite element method for frictional contact on arbitrary interfaces.” Comput. Mech. 39 (3): 223–235. https://doi.org/10.1007/s00466-005-0019-4.
Kostetskii, B. I., and P. V. Nazarenko. 1966. “Study of dislocation structure for static and dynamic friction.” Mater. Sci. 1 (1): 49–52. https://doi.org/10.1007/BF00714985.
Laursen, T. 2002. Computational contact and impact mechanics. Berlin: Springer.
Li, N., P. Zhang, and Q. W. Duan. 2003. “Dynamic damage model of the rock mass medium with microjoints.” Int. J. Damage Mech. 12 (2): 163–173. https://doi.org/10.1177/1056789503012002004.
Liu, F. S., and R. I. Borja. 2008. “A contact algorithm for frictional crack propagation with the extended finite element method.” Int. J. Numer. Methods Eng. 76 (10): 1489–1512. https://doi.org/10.1002/nme.2376.
Melenk, J. M., and I. Babuška. 1996. “The partition of unity finite element method: Basic theory and applications.” Comput. Methods Appl. Mech. Eng. 139 (1): 289–314. https://doi.org/10.1016/S0045-7825(96)01087-0.
Menouillard, T., J. Réthoré, A. Combescure, and H. Bung. 2006. “Efficient explicit time stepping for the extended finite element method (X-FEM).” Int. J. Numer. Methods Eng. 68 (9): 911–939. https://doi.org/10.1002/nme.1718.
Moës, N., J. Dolbow, and T. Belytschko. 1999. “A finite element method for crack growth without remeshing.” Int. J. Numer. Methods Eng. 46 (1): 131–150.
Oden, J. T., and J. A. C. Martins. 1985. “Models and computational methods for dynamic friction phenomena.” Comput. Methods Appl. Mech. Eng. 52 (1): 527–634. https://doi.org/10.1016/0045-7825(85)90009-X.
Osher, S., and J. Sethian. 1988. “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobian formulations.” J. Comput. Phys. 79 (1): 12–49. https://doi.org/10.1016/0021-9991(88)90002-2.
Pantoja, J. F. A. D. O., and D. Q. Mayne. 1991. “Exact penalty function algorithm with simple updating of the penalty parameter.” J. Optim. Theory Appl. 69 (3): 441–467. https://doi.org/10.1007/BF00940684.
Réthoré, J., A. Gravouil, and A. Combescure. 2005. “An energy-conserving scheme for dynamic crack growth using the extended finite element method.” Int. J. Numer. Methods Eng. 63 (5): 631–659. https://doi.org/10.1002/nme.1283.
Rosakis, A. J., and L. B. Freund. 1982. “Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate.” J. Eng. Mater. Technol. 104 (2): 115–120. https://doi.org/10.1115/1.3225045.
Ruderman, M., and T. Bertram. 2013. “Two-state dynamic friction model with elasto-plasticity.” Mech. Syst. Signal Process. 39 (1): 316–332. https://doi.org/10.1016/j.ymssp.2013.03.010.
Shahbazi, K. 2005. “An explicit expression for the penalty parameter of the interior penalty method.” J. Comput. Phys. 205 (2): 401–407. https://doi.org/10.1016/j.jcp.2004.11.017.
Shih, C., and R. Asaro. 1988. “Elastic-plastic analysis of cracks on biomaterial interfaces. Part I: Small scale yielding.” J. Appl. Mech. 55 (2): 299–316. https://doi.org/10.1115/1.3173676.
Siavelis, M., M. Guiton, P. Massin, and N. Moës. 2013. “Large sliding contact along branched discontinuities with X-FEM.” Comput. Mech. 52 (1): 201–219. https://doi.org/10.1007/s00466-012-0807-6.
Siavelis, M., P. Massin, M. L. E. Guiton, S. Mazet, N. Moës, and K. Shimada. 2010. “Robust implementation of contact under friction and large sliding with the extended finite element method.” Eur. J. Comput. Mech. 19 (1): 189–203. https://doi.org/10.3166/ejcm.19.189-203.
Stolarska, M., D. L. Chopp, N. Moës, and T. Belytschko. 2001. “Modelling crack growth by level sets in the extended finite element method.” Int. J. Numer. Methods Eng. 51 (8): 943–960. https://doi.org/10.1002/nme.201.
Wu, Z. J., and L. N. Y. Wong. 2012. “Frictional crack initiation and propagation analysis using the numerical manifold method.” Comput. Geotech. 39 (1): 38–53. https://doi.org/10.1016/j.compgeo.2011.08.011.
Yang, H. Q., J. F. Liu, and B. L. Liu. 2018. “Investigation on the cracking character of jointed rock mass beneath TBM disc cutter.” Rock Mech. Rock Eng. 51 (4): 1263–1277. https://doi.org/10.1007/s00603-017-1395-8.
Zhou, X. P., and H. Cheng. 2017. “Multidimensional space method for geometrically nonlinear problems under total Lagrangian formulation based on the extended finite-element method.” J. Eng. Mech. 143 (7): 04017036. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001241.
Zhou, X. P., and H. Q. Yang. 2012. “Multiscale numerical modeling of propagation and coalescence of multiplecracks in rock masses.” Int. J. Rock Mech. Min. Sci. 55 (10): 15–27. https://doi.org/10.1016/j.ijrmms.2012.06.001.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 2February 2019

History

Received: Apr 9, 2017
Accepted: Jun 18, 2018
Published online: Nov 20, 2018
Published in print: Feb 1, 2019
Discussion open until: Apr 20, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Lecturer, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Xiaoping Zhou [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share