Technical Papers
Sep 22, 2018

Atomistic Simulation of Mechanical Properties of Au32 Cluster Peapod Structures: Molecular Dynamics and Density Functional Theory

Publication: Journal of Engineering Mechanics
Volume 144, Issue 12

Abstract

This study investigates the effect of encapsulating a golden fullerene (Au32) cluster on the mechanical properties of a single-walled carbon nanotube (SWCNT) and a boron-nitride nanotube (BNNT). First, the geometrical parameters of the nanopeapods were optimized using the density functional theory (DFT) method. The DFT results demonstrated that the strength of interaction between the Au32 cage and a BNNT was stronger than that between the Au32 cage and SWCNT. The molecular dynamics (MD) method was then applied to calculate mechanical properties such as Young’s modulus, failure stress, and failure strain using a stress–strain plot. The mechanical results indicated that encapsulating the Au32 cluster reduced the Young’s modulus and failure stress of both a SWCNT and BNNT, whereas the failure strain did not observably change. To validate these results, a C60 cage was inserted inside an SWCNT in the most exothermic situation. The MD calculation indicated that, similar to the effect of Au32 in the Au32-nanotube peapod, C60 reduced the mechanical properties of the SWCNT.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahangari, M. G., A. Fereidoon, and M. D. Ganji. 2013. “Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: Electronic and mechanical properties.” J. Mol. Model. 19 (8): 3127–3134. https://doi.org/10.1007/s00894-013-1852-6.
Bettinger, H. F., T. Dumitrică, G. E. Scuseria, and B. I. Yakobson. 2002. “Mechanically induced defects and strength of BN nanotubes.” Phys. Rev. B 65 (4): 041406. https://doi.org/10.1103/PhysRevB.65.041406.
Bianco, A., K. Kostarelos, and M. Prato. 2005. “Applications of carbon nanotubes in drug delivery.” Curr. Opin. Chem. Biol. 9 (6): 674–679. https://doi.org/10.1016/j.cbpa.2005.10.005.
Chopra, N. G., R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl. 1995. “Boron nitride nanotubes.” Science 269 (5226): 966–967. https://doi.org/10.1126/science.269.5226.966.
Chopra, N. G., and A. Zettl. 1998. “Measurement of the elastic modulus of a multi-wall boron nitride nanotube.” Solid State Commun. 105 (5): 297–300. https://doi.org/10.1016/S0038-1098(97)10125-9.
Daw, M. S., S. M. Foiles, and M. I. Baskes. 1993. “The embedded-atom method: A review of theory and applications.” Mater. Sci. Rep. 9 (7–8): 251–310. https://doi.org/10.1016/0920-2307(93)90001-U.
Fakhrabad, D. V., and N. Shahtahmassebi. 2013. “First-principles calculations of the Young’s modulus of double wall boron-nitride nanotubes.” Mater. Chem. Phys. 138 (2–3): 963–966. https://doi.org/10.1016/j.matchemphys.2013.01.004.
Fereidoon, A., M. Ghorbanzadeh Ahangari, M. D. Ganji, and M. Jahanshahi. 2012. “Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes.” Comput. Mater. Sci. 53 (1): 377–381. https://doi.org/10.1016/j.commatsci.2011.08.007.
Fereidoon, A., M. Mostafaei, M. D. Ganji, and F. Memarian. 2015. “Atomistic simulations on the influence of diameter, number of walls, interlayer distance and temperature on the mechanical properties of BNNTs.” Superlattices Microstruct. 86 (10): 126–133. https://doi.org/10.1016/j.spmi.2015.07.036.
Ganji, M. D., N. Sharifi, and M. G. Ahangari. 2014a. “Adsorption of H2S molecules on non-carbonic and decorated carbonic graphenes: A van der Waals density functional study.” Comput. Mater. Sci. 92 (12): 127–134. https://doi.org/10.1016/j.commatsci.2014.05.035.
Ganji, M. D., N. Sharifi, A. Fereidoon, and M. Ghorbanzadeh Ahangari. 2014b. “Epoxy monomer adsorption on Group III (B, Al, Ga) nitride nanotubes: vdW-DF studies on mechanical and electronic properties.” Superlattices Microstruct. 67 (3): 127–143. https://doi.org/10.1016/j.spmi.2013.12.015.
Ghorbanzadeh Ahangari, M. 2015. “Modeling of the interaction between polypropylene and monolayer sheets: A quantum mechanical study.” RSC Adv. 5 (98): 80779–80785. https://doi.org/10.1039/C5RA14292J.
Ghorbanzadeh Ahangari, M., A. Fereidoon, M. Jahanshahi, and M. D. Ganji. 2013. “Electronic and mechanical properties of single-walled carbon nanotubes interacting with epoxy: A DFT study.” Phys. E 48 (2): 148–156. https://doi.org/10.1016/j.physe.2012.12.013.
Ghorbanzadeh Ahangari, M., M. D. Ganji, and F. Montazar. 2015. “Mechanical and electronic properties of carbon nanobuds: First-principles study.” Solid State Commun. 203 (3): 58–62. https://doi.org/10.1016/j.ssc.2014.11.019.
Grimme, S. 2006. “Semiempirical GGA-type density functional constructed with a long-range dispersion correction.” J. Comput. Chem. 27 (15): 1787–1799. https://doi.org/10.1002/jcc.20495.
Hernández, E., C. Goze, P. Bernier, and A. Rubio. 1999. “Elastic properties of single-wall nanotubes.” Appl. Phys. A 68 (3): 287–292. https://doi.org/10.1007/s003390050890.
Hohenberg, P., and W. Kohn. 1964. “Inhomogeneous electron gas.” Phys. Rev. 136 (3B): B864–B871. https://doi.org/10.1103/PhysRev.136.B864.
Hoover, W. G. 1985. “Canonical dynamics: Equilibrium phase-space distributions.” Phys. Rev. A 31 (3): 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695.
Iijima, S. 1991. “Helical microtubules of graphitic carbon.” Nature 354 (6348): 56–58. https://doi.org/10.1038/354056a0.
José, M. S., A. Emilio, D. G. Julian, G. Alberto, J. Javier, O. Pablo, and S.-P. Daniel. 2002. “The SIESTA method for ab initio order-N materials simulation.” J. Phys. Condens. Matter. 14 (11): 2745–2779. https://doi.org/10.1088/0953-8984/14/11/302.
Kohn, W. 1999. “Nobel lecture: Electronic structure of matter-wave functions and density functionals.” Rev. Mod. Phys. 71 (5): 1253–1266. https://doi.org/10.1103/RevModPhys.71.1253.
Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. 1985. “C60: Buckminsterfullerene.” Nature 318 (6042): 162–163. https://doi.org/10.1038/318162a0.
Kwon, Y.-K., D. Tománek, and S. Iijima. 1999. “Bucky shuttle memory device: Synthetic approach and molecular dynamics simulations.” Phys. Rev. Lett. 82 (7): 1470–1473. https://doi.org/10.1103/PhysRevLett.82.1470.
Lin, Y., C. E. Bunker, K. A. S. Fernando, and J. W. Connell. 2012. “Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices.” ACS Appl. Mater. Interfaces 4 (2): 1110–1117. https://doi.org/10.1021/am201747d.
Mashhadzadeh, A. H., A. M. Vahedi, M. Ardjmand, and M. G. Ahangari. 2016. “Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study.” Superlattices Microstruct. 100 (12): 1094–1102. https://doi.org/10.1016/j.spmi.2016.10.079.
Memarian, F., A. Fereidoon, S. Khodaei, A. H. Mashhadzadeh, and M. D. Ganji. 2017. “Molecular dynamic study of mechanical properties of single/double wall SiCNTs: Consideration temperature, diameter and interlayer distance.” Vacuum 139 (5): 93–100. https://doi.org/10.1016/j.vacuum.2017.02.014.
Monthioux, M. 2002. “Filling single-wall carbon nanotubes.” Carbon 40 (10): 1809–1823. https://doi.org/10.1016/S0008-6223(02)00102-1.
Neek-Amal, M., R. Asgari, and M. R. Tabar. 2009. “The formation of atomic nanoclusters on graphene sheets.” Nanotechnology 20 (13): 135602. https://doi.org/10.1088/0957-4484/20/13/135602.
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. “Electric field effect in atomically thin carbon films.” Science 306 (5696): 666–669. https://doi.org/10.1126/science.1102896.
Ordejón, P., E. Artacho, and J. M. Soler. 1996. “Self-consistent order-N density-functional calculations for very large systems.” Phys Rev. B 53 (16): R10441–R10444. https://doi.org/10.1103/PhysRevB.53.R10441.
Pakarinen, O. H., J. M. Mativetsky, A. Gulans, M. J. Puska, A. S. Foster, and P. Grutter. 2009. “Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface.” Phys. Rev. B 80 (8): 085401. https://doi.org/10.1103/PhysRevB.80.085401.
Perdew, J. P., K. Burke, and M. Ernzerhof. 1996. “Generalized gradient approximation made simple.” Phys. Rev. Lett. 77 (18): 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
Plimpton, S. 1995. “Fast parallel algorithms for short-range molecular dynamics.” J. Comput. Phys. 117 (1): 1–19. https://doi.org/10.1006/jcph.1995.1039.
Rubio, A., J. L. Corkill, and M. L. Cohen. 1994. “Theory of graphitic boron nitride nanotubes.” Phys. Rev. B 49 (7): 5081–5084. https://doi.org/10.1103/PhysRevB.49.5081.
Simon, F., and M. Monthioux. 2011. “Fullerenes inside carbon nanotubes: The peapods.” In Carbon meta-nanotubes. Chichester, UK: Wiley.
Smith, B. W., and D. E. Luzzi. 2000. “Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis.” Chem. Phys. Lett. 321 (1–2): 169–174. https://doi.org/10.1016/S0009-2614(00)00307-9.
Sofronov, A. A., V. V. Ivanovskaya, Y. N. Makurin, and A. L. Ivanovskii. 2002. “New one-dimensional crystals of (Sc,Ti,V)8C12 metallocarbohedrenes in carbon and boron-nitrogen (12, 0) nanotubes: Quantum chemical simulation of the electronic structure.” Chem. Phys. Lett. 351 (1–2): 35–41. https://doi.org/10.1016/S0009-2614(01)01309-4.
Suryavanshi, A. P., M.-F. Yu, J. Wen, C. Tang, and Y. Bando. 2004. “Elastic modulus and resonance behavior of boron nitride nanotubes.” Appl. Phys. Lett. 84 (14): 2527–2529. https://doi.org/10.1063/1.1691189.
Tersoff, J. 1988. “New empirical approach for the structure and energy of covalent systems.” Phys. Rev. B 37 (12): 6991–7000. https://doi.org/10.1103/PhysRevB.37.6991.
Verma, V., V. K. Jindal, and D. Keya. 2007. “Elastic moduli of a boron nitride nanotube.” Nanotechnology 18 (43): 435711. https://doi.org/10.1088/0957-4484/18/43/435711.
Wei, X., M.-S. Wang, Y. Bando, and D. Golberg. 2010. “Tensile tests on individual multi-walled boron nitride nanotubes.” Adv. Mater. 22 (43): 4895–4899. https://doi.org/10.1002/adma.201001829.
Wu, X., J. Yang, J. G. Hou, and Q. Zhu. 2004. “Deformation-induced site selectivity for hydrogen adsorption on boron nitride nanotubes.” Phys. Rev. B 69 (15): 153411. https://doi.org/10.1103/PhysRevB.69.153411.
Zhang, H., Z. Li, P. Xu, R. Wu, and Z. Jiao. 2010. “A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release.” Chem. Commun. 46 (36): 6783–6785. https://doi.org/10.1039/c0cc01673j.
Zhao, J., A. Buldum, J. Han, and J. P. Lu. 2002. “Gas molecule adsorption in carbon nanotubes and nanotube bundles.” Nanotechnology 13 (2): 195–200. https://doi.org/10.1088/0957-4484/13/2/312.
Zhong, X., R. Pandey, A. R. Rocha, and S. P. Karna. 2010. “Can single-atom change affect electron transport properties of molecular nanostructures such as C60 fullerene?” J. Phys. Chem. Lett. 1 (10): 1584–1589. https://doi.org/10.1021/jz100360t.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 12December 2018

History

Received: Jun 14, 2018
Accepted: Jun 18, 2018
Published online: Sep 22, 2018
Published in print: Dec 1, 2018
Discussion open until: Feb 22, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

M. Latimi
M.Sc. Student, Chemical and Oil and Gas Engineering Dept., Kavosh Institute of Higher Education, Mahmood Abad, Iran.
M. Ghorbanzadeh Ahangari [email protected]
Associated Professor, Faculty of Engineering and Technology, Dept. of Mechanical Engineering, Univ. of Mazandaran, Babolsar, Iran (corresponding author). Email: [email protected]; [email protected]
M. Jahanshahi
Professor, Nanotechnology Research Institute, School of Chemical Engineering, Babol Univ. of Technology, Babol, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share