Technical Papers
Oct 25, 2018

Role of Organic Matter on Nanoscale and Microscale Creep Properties of Source Rocks

Publication: Journal of Engineering Mechanics
Volume 145, Issue 1

Abstract

Studying the time-dependent behavior of gas shale formations is important for understanding the mechanical performance of source rocks in response to drilling, hydraulic fracturing, and pressure depletion due to production, among others. Compared with nonsource-rock shales, the role of the organic matter (OM) on creep rates of gas shale formations remains to be uncovered, which is the focus of this paper. By means of a hybrid experimental–modeling approach involving creep nanoindentation and microindentation and first-order modeling within the framework of the correspondence principle of viscoelasticity, it was found that organic matter drives creep rates of shale rocks, whereas the confining texture of the inorganic phases decelerate the creep rate. By means of micromechanical textural models used to analyze nanoindentation results, it is shown that creep in source rocks entail changes in packing density related to total organic carbon (TOC)-dependent energy-dissipation mechanisms in the microstructure: dilation in organic-poor and overmature source rocks, and compaction in organic-rich mature ones. Finally, a comparison of microindentation results with first-order creep homogenization modeling that considers the organic matter as the dominant creeping phase reveals that the relevant creep rate of organic-rich shale is situated within two asymptotes defined by texture: an upper bound defined by the self-consistent scheme representing mature disordered systems, and a lower bound defined by a continuous creeping matrix of immature OM with rigid clay inclusions. These morphologies relate to the connectivity of OM and, thus, to maturity.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was part of the X-Shale project, an industry–academia partnership between MIT, Shell, and Schlumberger enabled through MIT’s Energy Initiative. Shell and Schlumberger provided all the samples used in this study.

References

Abedi, S., M. Slim, R. Hofmann, T. Bryndzia, and F.-J. Ulm. 2016a. “Nanochemo-mechanical signature of organic-rich shales: A coupled indentation-EDX analysis.” Acta Geotech. 11 (3): 559–572. https://doi.org/10.1007/s11440-015-0426-4.
Abedi, S., M. Slim, and F.-J. Ulm. 2016b. “Nano-mechanics of organic-rich shales: The role of thermal maturity and organic matter content.” Acta Geotech. 11 (4): 775–787. https://doi.org/10.1007/s11440-016-0476-2.
Abousleiman, Y. N., K. L. Hull, Y. Han, G. Al-Muntasheri, P. Hosemann, S. Parker, and C. B. Howard. 2016. “The granular and polymer composite nature of kerogen-rich shale.” Acta Geotech. 11 (3): 573–594. https://doi.org/10.1007/s11440-016-0435-y.
Ahmadov, R., T. Vanorio, and G. Mavko. 2009. “Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov Formation.” Leading Edge 28 (1): 18–23. https://doi.org/10.1190/1.3064141.
Akaike, H. 1998. “Information theory and an extension of the maximum likelihood principle.” In Selected papers of Hirotugu Akaike, 199–213. New York: Springer.
Anton Paar Tritec SA. 2013. Ultra nanoindentation tester user manual. Graz, Austria: Anton Paar.
Banfield, J. D., and A. E. Raftery. 1993. “Model-based Gaussian and non-Gaussian clustering.” Biometrics 49 (3): 803–821. https://doi.org/10.2307/2532201.
Benveniste, Y. 1987. “A new approach to the application of Mori-Tanaka’s theory in composite materials.” Mech. Mater. 6 (2): 147–157. https://doi.org/10.1016/0167-6636(87)90005-6.
Biernacki, C., and G. Govaert. 1999. “Choosing models in model-based clustering and discriminant analysis.” J. Stat. Comput. Simul. 64 (1): 49–71. https://doi.org/10.1080/00949659908811966.
Bobko, C. P., B. Gathier, J. A. Ortega, F.-J. Ulm, L. Borges, and Y. N. Abousleiman. 2011. “The nanogranular origin of friction and cohesion in shale: A strength homogenization approach to interpretation of nanoindentation results.” Int. J. Numer. Anal. Methods Geomech. 35 (17): 1854–1876. https://doi.org/10.1002/nag.984.
Boutreux, T., and P. G. de Gennes. 1997. “Compaction of grains: A free volume model.” Physica A 244 (1–4): 59–67. https://doi.org/10.1016/S0378-4371(97)00236-7.
Bulychev, S. I., V. P. Alekhin, M. H. Shorshorov, A. P. Ternovskii, and G. D. Shnyrev. 1975. “Determining Young’s modulus from the indenter penetration diagram.” Ind. Lab. 41 (9): 1137–1140.
Carter, K. M., J. A. Harper, K. W. Schmid, and J. Kostelnik. 2011. “Unconventional natural gas resources in Pennsylvania: The backstory of the modern Marcellus Shale play.” Environ. Geosci 18 (4): 217–257. https://doi.org/10.1306/eg.09281111008.
Chalmers, G. R., R. M. Bustin, and I. M. Power. 2012. “Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units.” AAPG Bull. 96 (6): 1099–1119. https://doi.org/10.1306/10171111052.
Chen, J. J., L. Sorelli, M. Vandamme, F.-J. Ulm, and G. Chanvillard. 2010. “A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: Evidence for C–S–H/Ca (OH) 2 nanocomposites.” J. Am. Ceram. Soc. 93 (5): 1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x.
Christensen, R. M. 1982. Theory of viscoelasticity: An introduction. 2nd ed. London: Academic Press.
Cicero, A. D., I. Steinhoff, T. McClain, K. A. Koepke, and J. D. Dezelle. 2010. “Sequence stratigraphy of the Upper Jurassic mixed carbonate/siliciclastic Haynesville and Bossier Shale depositional systems in east Texas and north Louisiana.” Gulf Coast Assoc. Geol. Soc. Trans. 60: 133–148.
Constantinides, G., K. R. Chandran, F.-J. Ulm, and K. J. Van Vliet. 2006. “Grid indentation analysis of composite microstructure and mechanics: Principles and validation.” Mater. Sci. Eng.: A 430 (1): 189–202. https://doi.org/10.1016/j.msea.2006.05.125.
Cottrell, A. H. 1997. “Logarithmic and Andrade creep.” Philos. Mag. Lett. 75 (5): 301–308. https://doi.org/10.1080/095008397179552.
Curtis, M. E., R. J. Ambrose, C. H. Sondergeld, and C. S. Rai. 2011. “Investigation of the relationship between organic porosity and thermal maturity in the Marcellus Shale.” In Proc., North American Unconventional Gas Conf. and Exhibition. Richardson, TX: Society of Petroleum Engineers.
Curtis, M. E., B. J. Cardott, C. H. Sondergeld, and C. S. Rai. 2012. “Development of organic porosity in the Woodford Shale with increasing thermal maturity.” Int. J. Coal Geol. 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004.
Deirieh, A., I. Y. Chang, M. L. Whittaker, S. Weigand, D. Keane, J. Rix, J. T. Germaine, D. Joester, and P. B. Flemings. 2018. “Particle arrangements in clay suspensions: The case against the honeycomb structure.” Appl. Clay Sci. 152: 166–172. https://doi.org/10.1016/j.clay.2017.11.010.
Deirieh, A., J. A. Ortega, F.-J. Ulm, and Y. Abousleiman. 2012. “Nanochemomechanical assessment of shale: A coupled WDS-indentation analysis.” Acta Geotech. 7 (4): 271–295. https://doi.org/10.1007/s11440-012-0185-4.
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum likelihood from incomplete data via the EM algorithm.” J. R. Stat. Soc. Ser. B (Methodol.) 39 (1): 1–38.
Doerner, M. F., and W. D. Nix. 1986. “A method for interpreting the data from depth-sensing indentation instruments.” J. Mater. Res. 1 (4): 601–609. https://doi.org/10.1557/JMR.1986.0601.
Donnelly, E., S. P. Baker, A. L. Boskey, and M. C. van der Meulen. 2006. “Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation.” J. Biomed. Mater. Res. Part A 77 (2): 426–435. https://doi.org/10.1002/jbm.a.30633.
Dormieux, L., D. Kondo, and F.-J. Ulm. 2006. Microporomechanics. Chichester, UK: Wiley.
Dyke, P. 2001. An introduction to Laplace transforms and Fourier series. 2nd ed. London: Wiley.
Ewing, T. E. 2001. “Review of Late Jurassic depositional systems and potential hydrocarbon plays, northern Gulf of Mexico Basin.” Gulf Coast Assoc. Geol. Soc. Trans. 51: 85–96.
Feng, G., and A. H. W. Ngan. 2002. “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation.” J. Mater. Res. 17 (3): 660–668. https://doi.org/10.1557/JMR.2002.0094.
Fraley, C., and A. E. Raftery. 1998. “How many clusters? Which clustering method? Answers via model-based cluster analysis.” Comput. J. 41 (8): 578–588. https://doi.org/10.1093/comjnl/41.8.578.
Fraley, C., and A. E. Raftery. 1999. “MCLUST: Software for model-based cluster analysis.” J. Classification 16 (2): 297–306. https://doi.org/10.1007/s003579900058.
Fraley, C., and A. E. Raftery. 2002. “Model-based clustering, discriminant analysis and density estimation.” J. Am. Stat. Assoc. 97 (458): 611–631. https://doi.org/10.1198/016214502760047131.
Friel, J. J., and C. E. Lyman. 2006. “Tutorial review: X-ray mapping in electron-beam instruments.” Microsc. Microanal. 12 (1): 2–25. https://doi.org/10.1017/S1431927606060211.
Fritsch, A., L. Dormieux, C. Hellmich, and J. Sanahuja. 2007. “Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: Fundamentals and application to strength of hydroxyapatite biomaterials.” J. Mater. Sci. 42 (21): 8824–8837. https://doi.org/10.1007/s10853-007-1859-4.
Germaine, J. T., and A. V. Germaine. 2009. Geotechnical laboratory measurements for engineers. Hoboken, NJ: Wiley.
Hantal, G., L. Brochard, H. Laubie, D. Ebrahimi, R. J.-M. Pellenq, F.-J. Ulm, and B. Coasne. 2014. “Atomic scale modelling of elastic and failure properties of clays.” Mol. Phys. 112 (9–10): 1294–1305. https://doi.org/10.1080/00268976.2014.897393.
Hay, J. C., A. Bolshakov, and G. M. Pharr. 1999. “A critical examination of the fundamental relations used in the analysis of nanoindentation data.” J. Mater. Res. 14 (6): 2296–2305. https://doi.org/10.1557/JMR.1999.0306.
Hellmich, C., J. F. Barthélémy, and L. Dormieux. 2004. “Mineral-collagen interactions in elasticity of bone ultrastructure-a continuum micromechanics approach.” Eur. J. Mech. -A/Solids 23 (5): 783–810. https://doi.org/10.1016/j.euromechsol.2004.05.004.
Hill, R. 1965. “A self-consistent mechanics of composite materials.” J. Mech. Phys. Solids 13 (4): 213–222. https://doi.org/10.1016/0022-5096(65)90010-4.
Howell, P. D., and B. A. van der Pluijm. 1990. “Early history of the Michigan Basin: Subsidence and Appalachian tectonics.” Geol. 18 (12): 1195–1198. https://doi.org/10.1130/0091-7613(1990)018%3C1195:EHOTMB%3E2.3.CO;2.
Hubler, M. H., J. Gelb, and F.-J. Ulm. 2017. “Microtexture analysis of gas shale by XRM imaging.” J. Nanomech. Micromech. 7 (3): 04017005. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000123.
Hull, K. L., Y. Abousleiman, Y. Han, G. Al-Muntasheri, P. Hosemann, S. Parker, and C. B. Howard. 2017. “Nanomechanical characterization of the tensile modulus of rupture for kerogen-rich shale.” SPEJ 22 (4): 1024–1033. https://doi.org/10.2118/177628-PA.
Hysitron. 2011. TI 950 Triboindenter user manual. Minneapolis: Hysitron Incorporated.
Jain, S. K., and A. Nanda. 2010. “On the nature of secondary compression in soils.” In Vol. 2 of Proc., Indian Geotechnical Conf., 1121–1124. Mumbai, India.
Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro. 2007. “Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment.” AAPG Bull. 91 (4): 475–499. https://doi.org/10.1306/12190606068.
Kass, R. E., and A. E. Raftery. 1995. “Bayes factors.” J. Am. Stat. Assoc. 90 (430): 773–795. https://doi.org/10.1080/01621459.1995.10476572.
Krakowiak, K. J., W. Wilson, S. James, S. Musso, and F.-J. Ulm. 2015. “Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials.” Cem. Concr. Res. 67: 271–285. https://doi.org/10.1016/j.cemconres.2014.09.001.
Kumar, V., C. H. Sondergeld, and C. S. Rai. 2012. “Nano to macro mechanical characterization of shale.” In Proc., SPE Annual Technical Conf. and Exhibition. Richardson, TX: Society of Petroleum Engineers.
Lambe, T. W., and R. V. Whitman. 1969. Soil mechanics SI version. New York: Wiley.
Lemaître, A. 2002. “Rearrangements and dilatancy for sheared dense materials.” Phys. Rev. Lett. 89 (19): 195503. https://doi.org/10.1103/PhysRevLett.89.195503.
Liu, Y., N. Ferralis, L. T. Bryndzia, and J. C. Grossman. 2016. “Genome-inspired molecular identification in organic matter via Raman spectroscopy.” Carbon 101: 361–367. https://doi.org/10.1016/j.carbon.2016.02.017.
Loucks, R. G., R. M. Reed, S. C. Ruppel, and D. M. Jarvie. 2009. “Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale.” J. Sediment. Res. 79 (12): 848–861. https://doi.org/10.2110/jsr.2009.092.
Luffel, D. L., F. K. Guidry, and J. B. Curtis. 1996. Development of laboratory and petrophysical techniques for evaluating shale reservoirs: Final report (October 1986–September 1993) GRI-95/0496, 301. Chicago: Gas Research Institute.
Mesri, G., and A. Castro. 1987. “Cα/Cc concept and K0 during secondary compression.” J. Geotech. Eng. 113 (3): 230–247. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(230).
Monfared, S., and F.-J. Ulm. 2016. “A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites.” J. Mech. Phys. Solids 88: 186–203. https://doi.org/10.1016/j.jmps.2015.12.006.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Nabarro, F. R. N. 2001. “The time constant of logarithmic creep and relaxation.” Mater. Sci. Eng.: A 309–310: 227–228. https://doi.org/10.1016/S0921-5093(00)01692-0.
Nowak, E. R., J. B. Knight, E. Ben-Naim, H. M. Jaeger, and S. R. Nagel. 1998. “Density fluctuations in vibrated granular materials.” Phys. Rev. E 57 (2): 1971–1982. https://doi.org/10.1103/PhysRevE.57.1971.
Oliver, W. C., and G. M. Pharr. 1992. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” J. Mater. Res. 7 (6): 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
Oliver, W. C., and G. M. Pharr. 2004. “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology.” J. Mater. Res. 19 (1): 3–20. https://doi.org/10.1557/jmr.2004.19.1.3.
Ortega, J. A., F.-J. Ulm, and Y. Abousleiman. 2007. “The effect of the nanogranular nature of shale on their poroelastic behavior.” Acta Geotech. 2 (3): 155–182. https://doi.org/10.1007/s11440-007-0038-8.
Ortega, J. A., F.-J. Ulm, and Y. Abousleiman. 2009. “The nanogranular acoustic signature of shale.” Geophysics 74 (3): D65–D84. https://doi.org/10.1190/1.3097887.
Potts, J. J. 1992. A handbook of silicate rock analysis. New York: Springer.
Prasad, M., T. Mukerji, M. Reinstaedler, and W. Arnold. 2009. “Acoustic signatures, impedance microstructure, textural scales, and anisotropy of kerogen-rich shales.” In Proc., SPE Annual Technical Conf. and Exhibition. Richardson, TX: Society of Petroleum Engineers.
Randall, N. X., M. Vandamme, and F.-J. Ulm. 2009. “Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces.” J. Mater. Res. 24 (3): 679–690. https://doi.org/10.1557/jmr.2009.0149.
Schwarz, G. 1978. “Estimating the dimension of a model.” Ann. Stat. 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136.
Sneddon, I. N. 1965. “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile.” Int. J. Eng. Sci. 3 (1): 47–57. https://doi.org/10.1016/0020-7225(65)90019-4.
Sone, H., and M. D. Zoback. 2013a. “Mechanical properties of shale-gas reservoir rocks. Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus.” Geophysics 78 (5): D393–D402. https://doi.org/10.1190/geo2013-0051.1.
Sone, H., and M. D. Zoback. 2013b. “Viscoplastic deformation of shale gas reservoir rocks and its relation to the in-situ stress variations observed in a well from Barnett Shale.” In Proc., AAPG Annual Convention. Pittsburgh.
Spaepen, F. 1977. “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses.” Acta Metall. 25 (4): 407–415. https://doi.org/10.1016/0001-6160(77)90232-2.
Ulm, F.-J., and Y. Abousleiman. 2006. “The nanogranular nature of shale.” Acta Geotech. 1 (2): 77–88. https://doi.org/10.1007/s11440-006-0009-5.
Ulm, F.-J., G. Constantinides, A. Delafargue, Y. Abousleiman, R. Ewy, L. Duranti, and D. K. McCarty. 2005. “Material invariant poromechanics properties of shales.” In Poromechanics III: Biot centennial (1905–2005), 637–644. London: A.A. Balkema.
Ulm, F.-J., M. Vandamme, C. Bobko, J. A. Ortega, K. Tai, and C. Ortiz. 2007. “Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale.” J. Am. Ceram. Soc. 90 (9): 2677–2692. https://doi.org/10.1111/j.1551-2916.2007.02012.x.
Vandamme, M., C. A. Tweedie, G. Constantinides, F.-J. Ulm, and K. J. Van Vliet. 2012. “Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading.” J. Mater. Res. 27 (1): 302–312. https://doi.org/10.1557/jmr.2011.302.
Vandamme, M., and F.-J. Ulm. 2006. “Viscoelastic solutions for conical indentation.” Int. J. Solids Struct. 43 (10): 3142–3165. https://doi.org/10.1016/j.ijsolstr.2005.05.043.
Vandamme, M., and F.-J. Ulm. 2009. “Nanogranular origin of concrete creep.” Proc. Nat. Acad. Sci. 106 (26): 10552–10557. https://doi.org/10.1073/pnas.0901033106.
Vandamme, M., and F.-J. Ulm. 2013. “Nanoindentation investigation of creep properties of calcium silicate hydrates.” Cem. Concr. Res. 52: 38–52. https://doi.org/10.1016/j.cemconres.2013.05.006.
Vlassak, J. J., and W. D. Nix. 1993. “Indentation modulus of elastically anisotropic half spaces.” Philos. Mag. A 67 (5): 1045–1056. https://doi.org/10.1080/01418619308224756.
Vlassak, J. J., and W. D. Nix. 1994. “Measuring the elastic properties of anisotropic materials by means of indentation experiments.” J. Mech. Phys. Solids 42 (8): 1223–1245. https://doi.org/10.1016/0022-5096(94)90033-7.
Wang, F. P., and R. M. Reed. 2009. "Pore networks and fluid flow in gas shales." In Proc., SPE Annual Technical Conf. and Exhibition. Richardson, TX: Society of Petroleum Engineers.
Wyatt, O. H. 1953. “Transient creep in pure metals.” Proc. Phys. Soc. Sect. B 66 (6): 459–480. https://doi.org/10.1088/0370-1301/66/6/303.
Zaoui, A. 2002. “Continuum micromechanics: Survey.” J. Eng. Mech. 128 (8): 808–816. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808).
Zargari, S., M. Prasad, K. C. Mba, and E. Mattson. 2011. “Organic maturity, hydrous pyrolysis, and elastic property in shales.” In Proc., Canadian Unconventional Resources Conf. Richardson, TX: Society of Petroleum Engineers.
Zeszotarski, J. C., R. R. Chromik, R. P. Vinci, M. C. Messmer, R. Michels, and J. W. Larsen. 2004. “Imaging and mechanical property measurements of kerogen via nanoindentation.” Geochim. Cosmochim. Acta 68 (20): 4113–4119. https://doi.org/10.1016/j.gca.2003.11.031.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 145Issue 1January 2019

History

Received: Feb 2, 2018
Accepted: Jun 13, 2018
Published online: Oct 25, 2018
Published in print: Jan 1, 2019
Discussion open until: Mar 25, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Shell Technology Center, 3333 Highway 6 South, Houston, TX 77082; formerly, Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (corresponding author). ORCID: https://orcid.org/0000-0001-9680-1061. Email: [email protected]
Sara Abedi, Ph.D.
Assistant Professor, Harold Vance Dept. of Petroleum Engineering, Texas A&M Univ., 3116 TAMU, College Station, TX 77843-3119.
L. Taras Bryndzia
Subject Matter Expert – Inorganic Geochemistry and Principal Science Expert – Earth Sciences, Shell Technology Center, 3333 Highway 6 South, Houston, TX 77082.
Franz-Josef Ulm, Ph.D., M.ASCE
Professor, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share