Technical Papers
Jul 13, 2018

Noncoaxiality between Fabric and Stress in Two-Dimensional Granular Materials

Publication: Journal of Engineering Mechanics
Volume 144, Issue 9

Abstract

This paper investigates the evolution of the fabric for different contact networks (i.e., the strong, weak, and overall contact networks) in granular material. Two-dimensional tests along proportional strain paths and simple shear tests are conducted using the discrete element method (DEM). Results show that the coaxiality between the principal directions of the fabric tensor for the overall contact network and that of the stress tensor depends on the loading conditions. The principal direction of the fabric tensor for the strong subnetwork is always coaxial with the stress direction. In addition, the major principal direction of the fabric tensor for the strong subnetwork is perpendicular to that of the weak subnetwork, regardless of any principal stress rotation. The fabric tensor for the strong subnetwork and the stress tensor at the critical state are proportional, with the coefficient of the proportionality being a function of the mean stress, if the critical stress can be approached.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Funding provided by the Natural Sciences and Engineering Research Council of Canada and the China Scholarship Council (CSC) is gratefully acknowledged.

References

Ai, J., P. A. Langston, and H. S. Yu. 2014. “Discrete element modeling of material noncoaxiality in simple shear flows.” Int. J. Numer. Anal. Methods Geomech. 38 (6): 615–635. https://doi.org/10.1002/nag.2230.
Bagi, K. 1996. “Stress and strain in granular assemblies.” Mech. Mater. 22 (3): 165–177. https://doi.org/10.1016/0167-6636(95)00044-5.
Bathurst, R. J., and L. Rothenburg. 1988. “Micromechanical aspects of isotropic granular assemblies with linear contact interactions.” J. Appl. Mech. 55 (1): 17–23. https://doi.org/10.1115/1.3173626.
Cai, Y., H.-S. Yu, D. Wanatowski, and X. Li. 2013. “Noncoaxial behavior of sand under various stress paths.” J. Geotech. Geoenviron. Eng. 139 (8): 1381–1395. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000854.
Chang, C. S., and C. L. Liao. 1990. “Constitutive relation for a particulate medium with the effect of particle rotation.” Int. J. Solids Struct. 26 (4): 437–453. https://doi.org/10.1016/0020-7683(90)90067-6.
Christoffersen, J., M. M. Mehrabadi, and S. Nemat-Nasser. 1981. “A micromechanical description of granular material behavior.” J. Appl. Mech. Trans. ASME 48 (2): 339–344. https://doi.org/10.1115/1.3157619.
Daouadji, A., P. Y. Hicher, M. Jrad, B. Sukumaran, and S. Belouettar. 2013. “Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths.” Geotechnique 63 (5): 368–381. https://doi.org/10.1680/geot.10.P.121.
Daouadji, A., M. Jrad, G. Robin, A. Brara, and E. M. Daya. 2017. “Phase transformation states of loose and dense granular materials under proportional strain loading.” J. Eng. Mech. 143 (1): C4016007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001056.
Fu, P., and Y. F. Dafalias. 2015. “Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials.” Int. J. Solids Struct. 63 (15): 68–81. https://doi.org/10.1016/j.ijsolstr.2015.02.041.
Gao, Z., and J. Zhao. 2017. “A noncoaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution.” Int. J. Solids Struct. 106: 200–212. https://doi.org/10.1016/j.ijsolstr.2016.11.019.
Gutierrez, M., K. Ishihara, and T. Ikuo. 1993. “Model for the deformation of sand during rotation of principal stress directions.” Soils Found. 33 (3): 105–117. https://doi.org/10.3208/sandf1972.33.3_105.
Hosseininia, E. S. 2015. “A micromechanical study on the stress rotation in granular materials due to fabric evolution.” Powder Technol. 283: 462–474. https://doi.org/10.1016/j.powtec.2015.06.013.
Huang, X., K. J. Hanley, C. O’Sullivan, and C. Y. Kwok. 2014. “Exploring the influence of interparticle friction on critical state behaviour using DEM.” Int. J. Numer. Anal. Methods Geomech. 38 (12): 1276–1297. https://doi.org/10.1002/nag.2259.
Iwashita, K., and M. Oda 1999. Mechanics of granular materials: An introduction. Rotterdam, Netherlands: A.A. Balkema.
Jiang, M., H. Yu, and D. Harris. 2006. “Kinematic variables bridging discrete and continuum granular mechanics.” Mech. Res. Commun. 33 (5): 651–666. https://doi.org/10.1016/j.mechrescom.2005.06.013.
Joer, H., J. Lanier, and E. Flavigny. 1992. “‘1γ2ϵ’: A new shear apparatus to study the behavior of granular materials.” ASTM Geotech. Test. J. 15 (2): 129–137. https://doi.org/10.1520/GTJ10235J.
Konishi, J., and F. Naruse. 1988. “A note on the fabric in terms of voids.” Micromech. Granular Mater. 20: 39–46. https://doi.org/10.1016/B978-0-444-70523-5.50012-6.
Kruyt, N. P. 2012. “Micromechanical study of fabric evolution in quasi-static deformation of granular materials.” Mech. Mater. 44: 120–129. https://doi.org/10.1016/j.mechmat.2011.07.008.
Kuhn, M. R. 1999. “Structured deformation in granular materials.” Mech. Mater. 31 (6): 407–429. https://doi.org/10.1016/S0167-6636(99)00010-1.
Kuo, C. Y., J. D. Frost, and J. L. A. Chameau. 1998. “Image analysis determination of stereology based fabric tensors.” Geotechnique 48 (4): 515–525. https://doi.org/10.1680/geot.1998.48.4.515.
Li, X., and X. S. Li. 2009. “Micro-macro quantification of the internal structure of granular materials.” J. Eng. Mech. 135 (7): 641–656. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:7(641).
Li, X., and H. S. Yu. 2009. “Influence of loading direction on the behavior of anisotropic granular materials.” Int. J. Eng. Sci. 47 (11–12): 1284–1296. https://doi.org/10.1016/j.ijengsci.2009.03.001.
Li, X., and H. S. Yu. 2011. “Applicability of stress–force–fabric relationship for nonproportional loading.” Comput. Struct. 89 (11): 1094–1102. https://doi.org/10.1016/j.compstruc.2010.12.004.
Li, X., and H. S. Yu. 2013. “On the stress-force-fabric relationship for granular materials.” Int. J. Solids Struct. 50 (9): 1285–1302. https://doi.org/10.1016/j.ijsolstr.2012.12.023.
Love, A. E. H. 1926. “A treatise on the mathematical theory of elasticity.” Nature 105 (2643): 662.
Maeda, K., H. Hirabayashi, and A. Ohmura. 2006. “Micromechanical influence of grain properties on deformation-failure behaviors of granular media by DEM.” In Proc., Geomechanics and Geotechnics of Particulate Media, 173–179. London: Taylor & Francis Group.
Matsuoka, H., K. Sakakibara, and Y. Suzuki. 1988. “A constitutive model for granular materials evaluating principal stress rotation.” Stud. Appl. Mech. 20: 287–296. https://doi.org/10.1016/B978-0-444-70523-5.50040-0.
Mehrabadi, M. M., and S. Nemat-Nasser. 1983. “Stress, dilatancy and fabric in granular materials.” Mech. Mater. 2 (2): 155–161. https://doi.org/10.1016/0167-6636(83)90034-0.
Mehrabadi, M. M., S. Nemat-Nasser, and M. Oda. 1982. “On statistical description of stress and fabric in granular materials.” Int. J. Numer. Anal. Methods Geomech. 6 (1): 95–108. https://doi.org/10.1002/nag.1610060107.
Miura, K. I. N. Y. A., S. Miura, and S. Toki. 1986. “Deformation behavior of anisotropy dense sand under principal stress axes rotation.” Soils Found. 26 (1): 36–52. https://doi.org/10.3208/sandf1972.26.36.
Mohamed, A., and M. Gutierrez. 2010. “Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials.” Granular Matter 12 (5): 527–541. https://doi.org/10.1007/s10035-010-0211-x.
Ng, T. 2001. “Fabric evolution of ellipsoidal arrays with different particle shapes.” J. Eng. Mech. 127 (10): 994–999. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(994).
Nicot, F., A. Daouadji, N. Hadda, M. Jrad, and F. Darve. 2013. “Granular media failure along triaxial proportional strain paths.” Eur. J. Environ. Civ. Eng. 17 (9): 777–790. https://doi.org/10.1080/19648189.2013.819301.
Oda, M., J. Konishi, and S. Nemat-Nasser. 1982. “Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling.” Mech. Mater. 1 (4): 269–283. https://doi.org/10.1016/0167-6636(82)90027-8.
Oda, M., S. Nemat-Nasser, and J. Konishi. 1985. “Stress-induced anisotropy in granular masses.” Soils Found. 25 (3): 85–97. https://doi.org/10.3208/sandf1972.25.3_85.
Ohkawa, H., J. Kuwano, T. Nakada, and S. Tachibana. 2011. “Yielding characteristic and noncoaxiality of Toyoura sand on p′-constant shear stress plane.” Soils Found. 51 (1): 179–190. https://doi.org/10.3208/sandf.51.179.
Potyondy, D. O., and P. A. Cundall. 2004. “A bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
Pradel, D., K. Ishihara, and M. Gutierrez. 1990. “Yielding and flow of sand under principal stress axes rotation.” Soils Found. 30 (1): 87–99. https://doi.org/10.3208/sandf1972.30.87.
Radjai, F., D. Wolf, M. Jean, and J.-J. Moreau. 1998. “Bimodal character of stress transmission in granular packings.” Phys. Rev. Lett. 80 (1): 61–64. https://doi.org/10.1103/PhysRevLett.80.61.
Radjaï, F., M. Jean, J.-J. Moreau, and S. Roux. 1996. “Force distributions in dense two-dimensional granular systems.” Phys. Rev. Lett. 77 (2): 274–277. https://doi.org/10.1103/PhysRevLett.77.274.
Roscoe, K. H. 1970. “The influence of strains in soil mechanics.” Géotechnique 20 (2): 129–170. https://doi.org/10.1680/geot.1970.20.2.129.
Roscoe, K. H., R. H. Bassett, and E. R. Cole. 1967. “Principal axes observed during simple shear of a sand.” In Proc., Geotechnical Conf., 231–237. Oslo, Norway: Norsk Geoteknisk Forening.
Rothenburg, L., and R. J. Bathurst. 1989. “Analytical study of induced anisotropy granular materials in idealized.” Geotechnique 39 (4): 601–614. https://doi.org/10.1680/geot.1989.39.4.601.
Rothenburg, L., and N. P. Kruyt. 2004. “Critical state and evolution of coordination number in simulated granular materials.” Int. J. Solids Struct. 41 (21): 5763–5774. https://doi.org/10.1016/j.ijsolstr.2004.06.001.
Rothenburg, L., and A. Selvadurai. 1981. “A micromechanical definition of the Cauchy stress tensor for particulate media.” In Proc., Int. Symp. on Mechanical Behaviour of Structured Media, 469–486. Amsterdam, Netherlands: Elsevier.
Satake, M. 1978. “Constitution of mechanics of granular materials through graph representation.” In Proc., US–Japan Seminar on Continuum Mechanics and Statistical Approaches in the Mechanics of Granular Materials, edited by S. C. Cowin and M. Satake, 47–62. Tokyo: Gakujutsu Bunken Fukyukai.
Satake, M. 1987. “Graph-theoretical approach to the mechanics of granular materials.” In Continuum models of discrete systems, edited by A. J. M. Spencer, 163–172. Boston: Taylor & Francis.
Shi, J., and P. Guo. 2018a. “Fabric evolution of granular materials along imposed stress paths.” Acta Geotech. 1–14. https://doi.org/10.1007/s11440-018-0665-2.
Shi, J., and P. Guo. 2018b. “Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths.” Soils Found. 58 (2): 249–263. https://doi.org/10.1016/j.sandf.2018.02.001.
Subhash, G., S. Nemat-Nasser, M. M. Mehrabadi, and H. M. Shodj. 1991. “Experimental investigation of fabric-stress relations in granular materials.” Mech. Mater. 11 (2): 87–106. https://doi.org/10.1016/0167-6636(91)90010-W.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Wan, R., M. Al-Mamun, and P. Guo. 2007. “Experimental investigation of instabilities of granular materials in relation to dilatancy and fabric issues.” In Bifurcations, instabilities, degradation in geomechanics, 71–93. Berlin: Springer.
Weber, J. 1966. “Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents.” Bulletin de Liaison des Ponts-et-chaussées 20: 1–20.
Yu, H. S. 2008. “Noncoaxial theories of plasticity for granular materials.” In Proc., 12th Int. Conf. of IACMAG, 1–6. Red Hook, NY: Curran.
Yu, H.-S., L.-T. Yang, X. Li, and D. Wanatowski. 2015. “Experimental investigation on the deformation characteristics of granular materials under drained rotational shear.” Geomech. Geoeng. Int. J. 11 (1): 47–63. https://doi.org/10.1080/17486025.2015.1006267.
Zhao, J., and N. Guo. 2013. “Unique critical state characteristics in granular media considering fabric anisotropy.” Géotechnique 63 (8): 695–704. https://doi.org/10.1680/geot.12.P.040.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 9September 2018

History

Received: Jul 5, 2017
Accepted: Apr 10, 2018
Published online: Jul 13, 2018
Published in print: Sep 1, 2018
Discussion open until: Dec 13, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Jingshan Shi, Ph.D. [email protected]
Postdoctoral, Dept. of Civil Engineering, McMaster Univ., Hamilton, ON, Canada L8S 4L7 (corresponding author). Email: [email protected]
Professor, Dept. of Civil Engineering, McMaster Univ., Hamilton, ON, Canada L8S 4L7. Email: [email protected]
Dieter Stolle, A.M.ASCE [email protected]
Professor, Dept. of Civil Engineering, McMaster Univ., Hamilton, ON, Canada L8S 4L7. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share