Technical Papers
May 31, 2017

Procedures Based on Composite FEM Technology for the Resolution of Concrete-Framed Structures with Masonry In-Fills: Comparison with Mexican Building Code

Publication: Journal of Engineering Mechanics
Volume 143, Issue 9

Abstract

The construction of confined masonry buildings has become a good choice to meet the housing needs of low-income families in big cities. Despite this, current building codes for such construction allow the use of highly simplified analysis techniques that have hardly changed in the last 40 years. This paper is based on numerical simulation and discusses the need to combine and improve existing techniques in finite-element method (FEM) analysis for composite materials, to assess the overall structural behavior of reinforced concrete structures with masonry in-fills, and consequently to support the derivation of rational rules for analysis and design. Through the use of a simple yet powerful shell finite element (FE), state-of-the-art theories of mixtures to analyze composite materials, a computational tool to generate the volume fraction of composites, and the Mexican building code, this paper attempts to be a guide to numerical reproduction of the overall behavior of confined masonry structures.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work has been supported by the European Commission, under the Marie Curie program (IRSES agreement 612607, TCAINMAND project), by the European Research Council (Advanced Grant ERC-2012-AdG 320815 COMP-DES-MAT Advanced Tools for Computational Design of Engineering Materials), by the European Community (Grant NMP-2009-2.5-1 246067 Multiscale Reinforcement of Semi-Crystalline Thermoplastic Sheets and Honeycombs), by the Spanish Ministerio de Economia y Competividad (Project MAT2014-60647-R Multi-Scale and Multi-Objective Optimization of Composite Laminate Structures), and by the the Mexican government through a grant provided by CONACyT to complete Ph.D. studies. This support is gratefully acknowledged.

References

Allman, D. (1984). “A compatible triangular element including vertex rotations for plane elasticity analyses.” Comput. Struct., 19(1–2), 1–8.
Barney, B., et al. (2010). “Introduction to parallel computing.” ⟨https://computing.llnl.gov/tutorials/openMP/#Introduction⟩ (May 8, 2017).
Batoz, J.-L. (1982). “An explicit formulation for an efficient triangular plate-bending element.” Int. J. Numer. Methods Eng., 18(7), 1077–1089.
Batoz, J.-L., Bathe, K.-J., and Ho, L.-W. (1980). “A study of three-node triangular plate bending elements.” Int. J. Numer. Methods Eng., 15(12), 1771–1812.
Bazant, Z. P., and Pijaudier-Cabot, G. (1989). “Measurement of characteristic length of nonlocal continuum.” J. Eng. Mech., 755–767.
Bergan, P., and Felippa, C. (1985). “A triangular membrane element with rotational degree of freedom.” Comput. Methods Appl. Mech. Eng., 50(1), 25–69.
Brzev, S. (2007). Earthquake-resistant confined masonry construction, National Information Center of Earthquake Engineering, Indian Institute of Technology Kanpur, Kanpur, India.
Chaboche, J. (1988a). “Continuum damage mechanics. I: Damage growth, crack initiation, and crack growth.” J. Appl. Mech., 55(1), 65–72.
Chaboche, J. (1988b). “Continuum damage mechanics. I: General concepts.” J. Appl. Mech., 55(1), 59–64.
CIMNE (International Center for Numerical Methods in Engineering). (2014). “PLCd—Non-linear thermomechanic finite element code.” ⟨http://www.cimne.com/PLCd⟩ (May 8, 2017).
CIMNE (International Center for Numerical Methods in Engineering). (2015). “GiD—Adaptive and user-friendly pre and postprocessor for numerical simulations in science and engineering.” ⟨http://www.gidhome.com/⟩ (May 8, 2017).
del Distrito Federal, G. (1993). Reglamento de Construcciones Gobierno del Distrito Federal, México City.
del Distrito Federal, G. (2004a). Normas Técnicas Complementarias para Diseño por Sismo, México City.
del Distrito Federal, G. (2004b). Normas Técnicas Complementarias para Diseño y Construcciones de Estructuras de Concreto, México City.
del Distrito Federal, G. (2004c). Normas Técnicas Complementarias para Diseño y Construcciones de Estructuras de Mampostería, México City.
del Distrito Federal, G. (2004d). Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones, México City.
Eijo, A. (2014). “Finite element modelling of delamination in advanced composite beams and plates using one- and two-dimensional finite elements based on the refined zigzag theory.” Ph.D. dissertation, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona, Spain.
Escudero, C. (2015). “Numerical calculation model for the global analysis of concrete structures with masonry walls.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona, Spain.
Escudero, C., Oller, S., Martinez, X., and Barbat, A. H. (2016). “A laminated structural finite element for the behavior of large non-linear reinforced concrete structures.” Finite Elem. Anal. Des., 119, 78–94.
Esteva, L. (1961). Comportamiento de muros de mampostería sujetos a carga vertical, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City.
Esteva, L. (1963). Estimaciones de daños probables producidos por temblores en edificios, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City.
Esteva, L. (1966). “Behaviour under alternating loads of masonry diaphragms framed by reinforced concrete members.” Proc., Int. Symp. on the Effects of Repeated Loadings of Materials and Structures, RILEM, México City, 1–36.
Faria, R., Oliver, J., and Cervera, M. (1998). “A strain-based plastic viscous-damage model for massive concrete structures.” Int. J. Solids Struct., 35(14), 1533–1558.
Felippa, C. (2003). “A study of optimal membrane triangles with drilling freedom.” Comput. Methods Appl. Mech. Eng., 192(16), 2125–2168.
Fundación ICA. (1999). Edificaciones de mampostería para vivienda, México City.
Hernández, O. (1975). Recomendaciones para el diseño y construcción de estructuras de mampostería, Instituto de Ingeniería, Universidad Nacional Autónoma de México, México City.
Hillerborg, A., Modéer, M., and Petersson, P.-E. (1976). “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.” Cem. Concr. Res., 6(6), 773–781.
Hughes, T., and Brezzi, F. (1989). “On drilling degrees of freedom.” Comput. Methods Appl. Mech. Eng., 72(1), 105–121.
Jason, L., Huerta, A., Pijaudier-Cabot, G., and Ghavamian, S. (2006). “An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model.” Comput. Methods Appl. Mech. Eng., 195(52), 7077–7092.
Ju, J. (1989). “On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects.” Int. J. Solids Struct., 25(7), 803–833.
Khosravi, P., Ganesan, R., and Sedaghati, R. (2007). “Corotational non-linear analysis of thin plates and shells using a new shell element.” Int. J. Numer. Methods Eng., 69(4), 859–885.
Kojić, M., and Bathe, K.-J. (2005). Inelastic analysis of solids and structures, Springer, Berlin.
Lemaitre, J. (1985). “Coupled elasto-plasticity and damage constitutive equations.” Comput. Methods Appl. Mech. Eng., 51(1), 31–49.
Lourenço, P. (1996). “Computational strategies for masonry structures.” Ph.D. dissertation, Delft Univ., Delft, Netherlands.
Lourenço, P. B., Milani, G., Tralli, A., and Zucchini, A. (2007). “Analysis of masonry structures: Review of and recent trends in homogenization techniques.” Can. J. Civ. Eng., 34(11), 1443–1457.
Lubliner, J., Oliver, J., Oller, S., and Oñate, E. (1989). “A plastic-damage model for concrete.” Int. J. Solids Struct., 25(3), 299–326.
Madinaveitia, M. (1971). Ensayes de muros de mampostería con cargas excéntricas, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City.
Madinaveitia, M., and Rodríguez, G. (1970). Resistencia a carga vertical de muros fabricados con materiales usuales en el distrito federal, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City.
Martinez, X. (2008). “Micro-mechanical simulation of composite materials using the serial/parallel mixing theory.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona.
Martinez, X., Oller, S., Barbu, L. G., Barbat, A., and De Jesus, A. (2015). “Analysis of ultra low cycle fatigue problems with the Barcelona plastic damage model and a new isotropic hardening law.” Int. J. Fatigue, 73, 132–142.
Martinez, X., Oller, S., Rastellini, F., and Barbat, A. (2008). “A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory.” Comput. Struct., 86(15), 1604–1618.
Mazars, J., and Pijaudier-Cabot, G. (1989). “Continuum damage theory—Application to concrete.” J. Eng. Mech., 345–365.
Meli, R. (1979). Comportamiento sísmico de muros de mampostería, 2nd Ed., Instituto de Ingenieria, Universidad Nacional Autonoma de México, México City.
Meli, R., and Alcocer, S. M. (2004). “Implementation of structural earthquake-disaster mitigation programs in developing countries.” Nat. Hazards Rev., 29–39.
Meli, R., and Hernández, O. (1971). Propiedades de piezas para mampostería producidas en el distrito federal, Instituto de Ingeniería, Universidad Nacional Autonoma de México, México City.
Meli, R., and Hernández, O. (1975). Efectos de hundimientos diferenciales en construcciones a base de muros de mampostería, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, México City.
Meli, R., and Reyes, A. (1971). Propiedades mecánicas de la mampostería, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, México City.
Meli, R., and Salgado, G. (1969). Comportamiento de muros de mampostería sujetos a carga lateral, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, México City.
Meli, R., Zeevart, W., and Esteva, L. (1968). Comportamiento de muros de mampostería hueca ante carga lateral alternada, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, México City.
Oliver, J., Cervera, M., Oller, S., and Lubliner, J. (1990). “Isotropic damage models and smeared crack analysis of concrete.” Proc., 2nd Int. Conf. on Computer Aided Analysis and Design of Concrete Structures, Pineridge Press, Swansea, U.K., 945–958.
Oller, S. (1998). “Un modelo de daño continuo para materiales friccionales.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona, Spain.
Oller, S., Car, E., and Lubliner, J. (2003). “Definition of a general implicit orthotropic yield criterion.” Comput. Methods Appl. Mech. Eng., 192(7), 895–912.
Oller, S., Oñate, E., Miquel Canet, J., and Botello, S. (1993). “A finite element model for analysis of multiphase composite materials.” ICCM/9, 3, 94–103.
Oñate, E., Oller, S., Botello, S., and Canet, J. M. (1991). Métodos avanzados de cálculo de estructuras de materiales compuestos, Centro Internacional de Métodos Numéricos en Ingeniera, Barcelona, Spain.
Ortiz, M., and Popov, E. P. (1982). “Plain concrete as a composite material.” Mech. Mater., 1(2), 139–150.
Paredes, J. A. (2013). “Modelización numérica del comportamiento constitutivo del daño local y global y su correlación con la evolución de las frecuencias naturales en estructuras de hormigón reforzado.” Ph.D. dissertation, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona.
Paredes, J. A., Barbat, A. H., and Oller, S. (2011). “A compression-tension concrete damage model, applied to a wind turbine reinforced concrete tower.” Eng. Struct., 33(12), 3559–3569.
Pelà, L. (2009). “Continuum damage model for nonlinear analysis of masonry structures.” Ph.D. thesis, Università degli studi di Ferrara, Ferrara, Italy.
Rastellini, F., Oller, S., Salomón, O., and Oñate, E. (2008). “Composite materials non-linear modelling for long fibre-reinforced laminates: Continuum basis, computational aspects and validations.” Comput. Struct., 86(9), 879–896.
Rastellini, F. G. (2006). “Modelación numérica de la no-linealidad constitutiva de laminados compuestos.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya, Barcelona.
Rots, J. G. (1997). Structural masonry: An experimental/numerical basis for practical design rules, A.A. Balkema, Rotterdam, Netherlands.
Rots, J. G., and De Borst, R. (1987). “Analysis of mixed-mode fracture in concrete.” J. Eng. Mech., 1739–1758.
Simo, J., and Hughes, T. (1998). Computational inelasticity, Vol. 7, Springer, New York.
Simo, J., and Ju, J. (1987). “Strain- and stress-based continuum damage models. II: Computational aspects.” Int. J. Solids Struct., 23(7), 841–869.
Simo, J., and Ju, J. (1989). “Strain- and stress-based continuum damage models. I: Formulation.” Math. Comput. Model., 12(3), 378.
Tao, X., and Phillips, D. V. (2005). “A simplified isotropic damage model for concrete under bi-axial stress states.” Cem. Concr. Compos., 27(6), 716–726.
Truesdell, C., and Toupin, R. (1960). The classical field theories, Springer, New York.
Turkstra, C. (1970). Resistencia de muros de mampostería ante cargas verticales excéntricas, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City.
Vargas-Félix, M., and Botello-Rionda, S. (2012). “FEMT, an open source library and tools for solving large systems of equations in parallel.” Centro de Investigacion en Matemáticas, A.C., Guanajuato, Mexico.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 143Issue 9September 2017

History

Received: Jul 11, 2016
Accepted: Jan 31, 2017
Published online: May 31, 2017
Published in print: Sep 1, 2017
Discussion open until: Oct 31, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, ETSECCPB, Technical Univ. of Catalonia, 08034 Barcelona, Spain (corresponding author). ORCID: https://orcid.org/0000-0001-6755-0187. E-mail: [email protected]; [email protected]
Sergio Oller [email protected]
Professor, Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, ETSECCPB, Technical Univ. of Catalonia, 08034 Barcelona, Spain. E-mail: [email protected]
Xavier Martinez [email protected]
Professor, Departamento de Ciencia e Ingeniería Náutica, FBN, Technical Univ. of Catalonia, Pla de Palau 18, 08003 Barcelona, Spain. E-mail: [email protected]
Alex Barbat [email protected]
Professor, Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, ETSECCPB, Technical Univ. of Catalonia, 08034 Barcelona, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share