Open access
Technical Papers
Mar 31, 2017

Thermodynamic Derivation and Damage Evolution for a Fractional Cohesive Zone Model

Publication: Journal of Engineering Mechanics
Volume 143, Issue 7

Abstract

A thermodynamic derivation is presented for a fractional rate-dependent cohesive zone model recently proposed by the authors to combine damage and linear viscoelasticity. In this setting, the assumptions behind the initially proposed damage evolution law are revisited. In particular, in the original model damage evolution is driven only by the energy stored in the elastic arm of a fractional standard linear solid model and the relationship between total fracture energy and crack speed is monotonically increasing, with a sigmoidal shape. Here, physical arguments are discussed, which could support the hypothesis of allowing damage to be driven also by the remaining parts of the free energy. The implications of these different assumptions are then studied, analytically and numerically, and in both cases the assumption that damage is also driven by the remaining parts of the energy results in a nonmonotonic relationship between total fracture energy and crack speed, with a bell rather than sigmoidal shape. The analysis presented provides a novel physical interpretation of the significant differences found in the rate dependence of fracture in elastomers and glassy polymers.

Formats available

You can view the full content in the following formats:

References

Alfano, G., and Sacco, E. (2006). “Combining interface damage and friction in a cohesive-zone model.” Int. J. Numer. Methods Eng., 68(5), 542–582.
Amendola, G., Fabrizio, M., and Golden, J. (2014). “The minimum free energy in fractional models of materials with memory.” Commun. Appl. Ind. Math., 6(1), e-488.
Amendola, G., Fabrizio, M., and Golden, J. (2016). “Free energies and minimal states for scalar linear viscoelasticity.” J. Elast., 123(1), 97–123.
Bagley, R., and Torvik, P. (1983). “A theoretical basis for the application of fractional calculus to viscoelasticity.” J. Rheol., 27(3), 201–210.
Berger, L., Kausch, H., and Plummer, C. (2003). “Structure and deformation mechanisms in UHMWPE-fibres.” Polymer, 44(19), 5877–5884.
Bland, D. (1960). Theory of linear viscoelasticity, Pergamon, London.
Bourdin, B., Francfort, G., and Marigo, J.-J. (2008). “The variational approach to fracture.” J. Elast., 91(1–3), 5–148.
Breuer, S., and Onat, E. (1964). “On the determination of free energy in linear viscoelastic solids.” Zeitschrift für Angewandte Mathematik und Physik, 15(2), 184–191.
Chan, R., and Siegmund, T. (2004). “Vocal fold tissue failure: preliminary data and constitutive modeling.” J. Biomech. Eng., 126(4), 466–474.
Ciccotti, M., Giorgini, B., Vallet, D., and Barquins, M. (2004). “Complex dynamics in the peeling of an adhesive tape.” Int. J. Adhes. Adhes., 24(2), 143–151.
de Gennes, P. (1997). Soft interfaces: The 1994 Dirac memorial lecture, Cambridge University Press, Cambridge.
Del Piero, G. (2004). “The relaxed work functional in linear viscoelasticity.” Math. Mech. Solids, 9(2), 175–208.
Del Piero, G. (2014). A variational approach to fracture and other inelastic phenomena, Springer, Netherlands.
Del Piero, G., and Deseri, L. (1996). “On the analytic expression of the free energy in linear viscoelasticity.” J. Elast., 43(3), 247–278.
Del Piero, G., and Deseri, L. (1997). “On the concepts of state and free energy in linear viscoelasticity.” Arch. Ration. Mech. Anal., 138(1), 1–35.
Deseri, L., Di Paola, M., and Zingales, M. (2014). “Free energy and states of fractional-order hereditariness.” Int. J. Solids Struct., 51(18), 3156–3167.
Deseri, L., Fabrizio, M., and Golden, J. (2006). “The concept of a minimal state in viscoelasticity: New free energies and applications to PDEs.” Arch. Ration. Mech. Anal., 181(1), 43–96.
Deseri, L., Gentili, G., and Golden, J. (1999). “An explicit formula for the minimal free energy in linear viscoelasticity.” J. Elast., 54(2), 141–185.
Di Paola, M., and Zingales, M. (2012). “Exact mechanical models of fractional hereditary materials.” J. Rheol., 56(5), 983–1004.
Fabrizio, M. (2014). “Fractional rheological models for thermomechanical systems: Dissipation and free energies.” Fractional Calculus Appl. Anal., 17(1), 206–223.
Fabrizio, M., and Golden, J. (2002). “Maximum and minimum free energies for a linear viscoelastic material.” Q. Appl. Math., 60(2), 341–348.
Fabrizio, M., and Golden, M. (2003). “Minimum free energies for materials with finite memory.” J. Elast., 72(1–3), 121–143.
Frassine, R., and Pavan, A. (1995). “Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites. I: Rate and temperature dependence in unidirectional PEI/carbon-fibre laminates.” Compos. Sci. Technol., 54(2), 193–200.
Frassine, R., Rink, M., and Pavan, A. (1993). “Viscoelastic effects on intralaminar fracture-toughness of epoxy carbon-fibre laminates.” J. Compos. Mater., 27(9), 921–933.
Golden, J. (2016). “Unique characterization of materials with memory.” Q. Appl. Math., 74(2), 361–374.
Graffi, D., and Fabrizio, M. (1989). “Non unicità dell’energia libera per materiali viscoelastici.” Atti Accademia dei Lincei–Rendiconti, 8(83), 209–214.
Grünwald, A. (1867). “Über ‘begrenzte’ derivationen und deren anwendung.” Zeitschrift für Angewandte Mathematik und Physik, 12, 441–480.
Haward, R. (1993). “Strain hardening of thermoplastics.” Macromolecules, 26(22), 5860–5869.
Hunter, S. (1961). “Tentative equations for the propagation of stress, strain and temperature fields in viscoelastic solids.” J. Mech. Phys. Solids, 9(1), 39–51.
Karac, A., et al. (2011). “Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate.” Eng. Fract. Mech., 78(6), 973–989.
Kausch, H. (2005). “The role of chain length and conformation in stress-transmission and fracture of thermoplastic polymers.” Phys. Solid State, 47(5), 934–941.
Kinloch, A., and Young, R. (1983). Fracture behaviour of polymers, Applied Science Publishers, London.
Koeller, R. (1984). “Application of fractional calculus to the theory of viscoelasticity.” J. Appl. Mech., 51(2), 299–307.
Kovalchick, C., Molinari, A., and Ravichandran, G. (2014). “Rate dependent adhesion energy and nonsteady peeling of inextensible tapes.” J. Appl. Mech., 81(4), 041016.
Kumar, J., and Ananthakrishna, G. (2010). “Influence of viscoelastic nature on the intermittent peel-front dynamics of adhesive tape.” Phys. Rev. E, 82(1), 016211.
Mainardi, F., and Gorenflo, R. (2007). “Time-fractional derivatives in relaxation processes: A tutorial survey.” Fractional Calculus Appl. Anal., 10(3), 269–308.
Maugin, G. (1999). The thermomechanics of nonlinear irreversible behaviors, World Scientific, Singapore.
Musto, M. (2014). “On the formulation of hereditary cohesive-zone models.” Ph.D. thesis, Brunel Univ., London.
Musto, M., and Alfano, G. (2013). “A novel rate-dependent cohesive-zone model combining damage and visco-elasticity.” Comput. Struct., 118, 126–133.
Musto, M., and Alfano, G. (2015). “A fractional rate-dependent cohesive-zone model.” Int. J. Numer. Methods Eng., 103(5), 313–341.
Nutting, P. (1921). “A new general law of deformation.” J. Franklin Inst., 191(5), 679–685.
Oldfield, M., Dini, D., Giordano, G., and Rodriguez y Baena, F. (2013). “Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach.” Comput. Methods Biomech. Biomed. Eng., 16(5), 530–543.
Padovan, J. (1987). “Computational algorithms for FE formulations involving fractional operators.” Comput. Mech., 2(4), 271–287.
Schiessel, H., and Blumen, A. (1993). “Hierarchical analogs to fractional relaxation equations.” J. Phys. A: Math. Gen., 26(19), 5057–5069.
Schiessel, H., and Blumen, A. (1995). “Mesoscopic pictures of the sol-gel transition–Ladder models and fractal networks.” Macromolecules, 28(11), 4013–4019.
Schmidt, A., and Gaul, L. (2002). “Finite element formulation of viscoelastic constitutive equations using fractional time derivatives.” Nonlinear Dyn., 29(1–4), 37–55.
Scott Blair, G. (1947). “The role of psychophysics in rheology.” J. Colloid Sci., 2(1), 21–32.
Staverman, A., and Schwarzl, F. (1952). “Thermodynamics of viscoelastic behavior.” Proc., Royal Dutch Acad. Sci., B55(5), 474–485.
Xu, C., Siegmund, T., and Ramani, K. (2003). “Rate-dependent crack growth in adhesives. II: Experiments and analysis.” Int. J. Adhes. Adhes., 23(1), 15–22.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 143Issue 7July 2017

History

Received: Aug 4, 2015
Accepted: Oct 3, 2016
Published online: Mar 31, 2017
Published in print: Jul 1, 2017
Discussion open until: Aug 31, 2017

Authors

Affiliations

Dept. of Mechanical, Aerospace and Civil Engineering, Brunel Univ., Kingston Ln., Uxbridge UB8 3PH, U.K. (corresponding author). ORCID: https://orcid.org/0000-0002-8415-4589. E-mail: [email protected]
Marco Musto, Ph.D. [email protected]
Dept. of Mechanical, Aerospace and Civil Engineering, Brunel Univ., Kingston Ln., Uxbridge UB8 3PH, U.K. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share