Technical Papers
Jan 20, 2017

Meshfree Methods: Progress Made after 20 Years

Publication: Journal of Engineering Mechanics
Volume 143, Issue 4

Abstract

In the past two decades, meshfree methods have emerged into a new class of computational methods with considerable success. In addition, a significant amount of progress has been made in addressing the major shortcomings that were present in these methods at the early stages of their development. For instance, essential boundary conditions are almost trivial to enforce by employing the techniques now available, and the need for high order quadrature has been circumvented with the development of advanced techniques, essentially eliminating the previously existing bottleneck of computational expense in meshfree methods. Given the proper treatment, nodal integration can be made accurate and free of spatial instability, making it possible to eliminate the need for a mesh entirely. Meshfree collocation methods have also undergone significant development, which also offer a truly meshfree solution. This paper gives an overview of many classes of meshfree methods and their applications, and several advances are described in detail.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The support of this work by the U.S. Army Engineer Research and Development Center under contract W15QKN-12-9-1006 to University of California, San Diego, and the U.S. Army Corps of Engineers SERDP Program under contract W912HQ-16-P-0002 to the University of Illinois at Chicago is greatly acknowledged.

References

Aluru, N. R. (2000). “A point collocation method based on reproducing kernel approximations.” Int. J. Numer. Methods Eng., 47(6), 1083–1121.
Andersen, S., and Andersen, L. (2010). “Modelling of landslides with the material-point method.” Comput. Geosci., 14(1), 137–147.
Arroyo, M., and Ortiz, M. (2006). “Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods.” Int. J. Numer. Methods Eng., 65(13), 2167–2202.
Ataie-Ashtiani, B., and Farhadi, L. (2006). “A stable moving-particle semi-implicit method for free surface flows.” Fluid Dyn. Res., 38(4), 241–256.
Atluri, S. N., Kim, H. G., and Cho, J. Y. (1999). “Critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods.” Comput. Mech., 24(5), 348–372.
Atluri, S. N., and Shen, S. (2002). The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press, Duluth, GA.
Atluri, S. N., and Zhu, T. L. (1998). “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics.” Comput. Mech., 22(2), 117–127.
Auricchio, F., Da Veiga, L. B., Hughes, T. J. R., Reali, A., and Sangalli, G. (2010). “Isogeometric collocation methods.” Math. Models Methods Appl. Sci., 20(11), 2075–2107.
Babuška, I., Banerjee, U., and Osborn, J. E. (2003). “Meshless and generalized finite element methods: A survey of some major results.” Meshfree methods for partial differential equations, Springer, Berlin, 1–20.
Babuška, I., Banerjee, U., Osborn, J. E., and Li, Q. (2008). “Quadrature for meshless methods.” Int. J. Numer. Methods Eng., 76(9), 1434–1470.
Babuška, I., Banerjee, U., Osborn, J. E., and Zhang, Q. (2009). “Effect of numerical integration on meshless methods.” Comput. Methods Appl. Mech. Eng., 198(37–40), 2886–2897.
Babuška, I., and Melenk, J. M. (1997). “The partition of unity method.” Int. J. Numer. Methods Eng., 40(4), 727–758.
Bardenhagen, S. G., and Kober, E. M. (2004). “The generalized interpolation material point method.” Comput. Model. Eng. Sci., 5(6), 477–495.
Barta, J. (1937). “Über die Näherungsweise Lösung einiger Zweidimensionaler Elastizität Aufgaben.” ZAMM – J. Appl. Math. Mech., 17(3), 184–185.
Beissel, S. R., and Belytschko, T. (1996). “Nodal integration of the element-free Galerkin method.” Comput. Methods Appl. Mech. Eng., 139(1–4), 49–74.
Beissel, S. R., Gerlach, C. A., and Johnson, G. R. (2006). “Hypervelocity impact computations with finite elements and meshfree particles.” Int. J. Impact Eng., 33(1–12), 80–90.
Belikov, V. V, Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A., and Semenov, A. Y. (1997). “The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points.” Comput. Math. Math. Phys., 37(1), 9–15.
Belytschko, T., and Black, T. (1999). “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Methods Eng., 45(5), 601–620.
Belytschko, T., Gu, L., and Lu, Y. Y. (1994a). “Fracture and crack growth by element free Galerkin methods.” Model. Simul. Mater. Sci. Eng., 2(3A), 519–534.
Belytschko, T., Guo, Y., Liu, W. K., and Xiao, S. P. (2000). “A unifieded stability analysis of meshless particle methods.” Int. J. Numer. Methods Eng., 48(9), 1359–1400.
Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., and Liu, W. K. (1996a). “Smoothing and accelerated computations in the element free Galerkin method.” J. Comput. Appl. Math., 74(1–2), 111–126.
Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996b). “Meshless methods: An overview and recent developments.” Comput. Methods Appl. Mech. Eng., 139(1–4), 3–47.
Belytschko, T., Lu, Y. Y., and Gu, L. (1994b). “Element-free Galerkin methods.” Int. J. Numer. Methods Eng., 37(2), 229–256.
Belytschko, T., Lu, Y. Y., and Gu, L. (1995a). “Crack propagation by element-free Galerkin methods.” Eng. Fract. Mech., 51(2), 295–315.
Belytschko, T., Lu, Y. Y., Gu, L., and Tabbara, M. (1995b). “Element-free galerkin methods for static and dynamic fracture.” Int. J. Solids Struct., 32(17–18), 2547–2570.
Belytschko, T., and Tabbara, M. (1996). “Dynamic fracture using element-free Galerkin methods.” Int. J. Numer. Methods Eng., 39(6), 923–938.
Benamou, J. D., and Brenier, Y. (1999). “A numerical method for the optimal time-continuous mass transport problem and related problems.” Contemporary mathematics, American Mathematical Society, Providence, RI, 1–12.
Benson, D. J., et al,. (2010). “A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM.” Int. J. Numer. Methods Eng., 83(6), 765–785.
Benz, W., and Asphaug, E. (1995). “Simulations of brittle solids using smooth particle hydrodynamics.” Comput. Phys. Commun., 87(1), 253–265.
Bessa, M. A., Foster, J. T., Belytschko, T., and Liu, W. K. (2014). “A meshfree unification: Reproducing kernel peridynamics.” Comput. Mech., 53(6), 1251–1264.
Bonet, J., and Kulasegaram, S. (2000). “Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations.” Int. J. Numer. Methods Eng., 47(6), 1189–1214.
Bordas, S. P. A., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment.” Eng. Fract. Mech., 75(5), 943–960.
Brackbill, J. U., Kothe, D. B., and Ruppel, H. M. (1988). “FLIP: A low-dissipation, particle-in-cell method for fluid flow.” Comput. Phys. Commun., 48(1), 25–38.
Brackbill, J. U., and Ruppel, H. M. (1986). “FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions.” J. Comput. Phys., 65(2), 314–343.
Braun, J., and Sambridge, M. (1995). “A numerical method for solving partial differential equations on highly irregular evolving grids.” Nature, 376(6542), 655–660.
Buhmann, M. D., and Micchelli, C. A. (1992). “Multiquadric interpolation improved.” Comput. Math. Appl., 24(12), 21–25.
Bui, H. H., and Fukagawa, R. (2013). “An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: Case of hydrostatic pore-water pressure.” Int. J. Numer. Anal. Methods Geomech., 37(1), 31–50.
Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S. (2008). “Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic—Plastic soil constitutive model.” Int. J. Numer. Anal. Methods Geomech., 32(12), 1537–1570.
Cecil, T., Qian, J., and Osher, S. (2004). “Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions.” J. Comput. Phys., 196(1), 327–347.
Chen, J. S., et al. (2011). “A multiscale meshfree approach for modeling fragment penetration into ultra high-strength concrete.”, U.S. Army Engineer Research and Development Center, Vicksburg, MS.
Chen, J. S., et al. (2015). “Pixel-based meshfree modelling of skeletal muscles.” Comput. Methods Biomech. Biomed. Eng.: Imag. Visualization, 4(2), 73–85.
Chen, J. S., and Belytschko, T. (2011). “Meshless and mesh free methods.” Encyclopedia of applied and computational mathematics, B. Engquist, ed., Springer, Berlin, 886–894.
Chen, J. S., Han, W., You, Y., and Meng, X. (2003). “A reproducing kernel method with nodal interpolation property.” Int. J. Numer. Methods Eng., 56(7), 935–960.
Chen, J. S., Hillman, M., and Rüter, M. (2013). “An arbitrary order variationally consistent integration for Galerkin meshfree methods.” Int. J. Numer. Methods Eng., 95(5), 387–418.
Chen, J. S., Hu, W., and Hu, H. Y. (2008). “Reproducing kernel enhanced local radial basis collocation method.” Int. J. Numer. Methods Eng., 75(5), 600–627.
Chen, J. S., Hu, W., and Puso, M. A. (2007a). “Orbital HP-clouds for solving Schrödinger equation in quantum mechanics.” Comput. Methods Appl. Mech. Eng., 196(37), 3693–3705.
Chen, J. S., Hu, W., Puso, M. A., Wu, Y., and Zhang, X. (2007b). “Strain smoothing for stabilization and regularization of galerkin meshfree methods.” Lecture Notes in Computational Science and Engineering, 57, Springer, Berlin, 57–75.
Chen, J. S., Pan, C., Roque, C. M. O. L., and Wang, H. P. (1998a). “A Lagrangian reproducing kernel particle method for metal forming analysis.” Comput. Mech., 22(3), 289–307.
Chen, J. S., Pan, C., and Wu, C. T. (1997). “Large deformation analysis of rubber based on a reproducing kernel particle method.” Comput. Mech., 19(3), 211–227.
Chen, J. S., Pan, C., Wu, C. T., and Liu, W. K. (1996). “Reproducing kernel particle methods for large deformation analysis of non-linear structures.” Comput. Methods Appl. Mech. Eng., 139(1-4), 195–227.
Chen, J. S., Roque, C. M. O. L., Pan, C., and Button, S. T. (1998c). “Analysis of metal forming process based on meshless method.” J. Mater. Process. Technol., 80–81, 642–646.
Chen, J. S., and Wang, D. (2006). “A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates.” Int. J. Numer. Methods Eng., 68(2), 151–172.
Chen, J. S., and Wang, H. P. (2000a). “Meshfree smooth surface contact algorithm for sheet metal forming.”.
Chen, J. S., and Wang, H. P. (2000b). “New boundary condition treatments in meshfree computation of contact problems.” Comput. Methods Appl. Mech. Eng., 187(3–4), 441–468.
Chen, J. S., Wang, H. P., Yoon, S., and You, Y. (2000c). “Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact.” Comput. Mech., 25(2–3), 137–156.
Chen, J. S., Wang, L., Hu, H. Y., and Chi, S. W. (2009). “Subdomain radial basis collocation method for heterogeneous media.” Int. J. Numer. Methods Eng., 80(2), 163–190.
Chen, J. S., and Wu, C. T. (1997). “On computational issues in large deformation analysis of rubber bushings.” J. Struct. Mech., 25(3), 287–309.
Chen, J. S., Wu, C. T., and Belytschko, T. (2000d). “Regularization of material instabilities by meshfree approximations with intrinsic length scales.” Int. J. Numer. Methods Eng., 47(7), 1303–1322.
Chen, J. S., Wu, C. T., and Yoon, S. (2001). “A stabilized conforming nodal integration for Galerkin mesh-free methods.” Int. J. Numer. Meth. Eng., 50(2), 435–466.
Chen, J. S., Yoon, S., Wang, H. P., and Liu, W. K. (2000e). “An improved reproducing kernel particle method for nearly incompressible finite elasticity.” Comput. Methods Appl. Mech. Eng., 181(1–3), 117–145.
Chen, J. S., Yoon, S., and Wu, C. T. (2002). “Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods.” Int. J. Numer. Methods Eng., 53(12), 2587–2615.
Chen, J. S., Zhang, X., and Belytschko, T. (2004). “An implicit gradient model by a reproducing kernel strain regularization in strain localization problems.” Comput. Methods Appl. Mech. Eng., 193(27–29), 2827–2844.
Chen, W., and Qiu, T. (2014). “Simulation of earthquake-induced slope deformation using SPH method.” Int. J. Numer. Anal. Methods Geomech., 38(3), 297–330.
Chi, S. W. (2009). “Image-based computational mechanics frameworks for skeletal muscles.” Ph.D. dissertation, Univ. of California, Los Angeles.
Chi, S. W., Chen, J. S., and Hu, H. Y. (2014). “A weighted collocation on the strong form with mixed radial basis approximations for incompressible linear elasticity.” Comput. Mech., 53(2), 309–324.
Chi, S. W., Chen, J. S., Hu, H. Y., and Yang, J. P. (2013). “A gradient reproducing kernel collocation method for boundary value problems.” Int. J. Numer. Methods Eng., 93(13), 1381–1402.
Chi, S. W., Lee, C. H., Chen, J. S., and Guan, P. C. (2015). “A level set enhanced natural kernel contact algorithm for impact and penetration modeling.” Int. J. Numer. Methods Eng., 102(3–4), 839–866.
Chui, C. K., Stöckler, J., and Ward, J. D. (1996). “Analytic wavelets generated by radial functions.” Adv. Comput. Math., 5(1), 95–123.
Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA, Wiley, Chichester, U.K.
Cyron, C. J., Arroyo, M., and Ortiz, M. (2009). “Smooth, second order, non-negative meshfree approximants selected by maximum entropy.” Int. J. Numer. Methods Eng., 79(13), 1605–1632.
De, S., and Bathe, K. J. (2000). “The method of finite spheres.” Comput. Mech., 25(4), 329–345.
De, S., and Bathe, K. J. (2001). “The method of finite spheres with improved numerical integration.” Comput. Struct., 79(22), 2183–2196.
Dilts, G. A. (1999). “Moving-least-squares hydrodynamics—I. Consistency and stability.” Int. J. Numer. Methods Eng., 44(8), 1115–1155.
Dolbow, J., and Belytschko, T. (1999). “Numerical integration of the Galerkin weak form in meshfree methods.” Comput. Mech., 23(3), 219–230.
Duan, Q., and Belytschko, T. (2009). “Gradient and dilatational stabilizations for stress-point integration in the element-free Galerkin method.” Int. J. Numer. Methods Eng., 77(6), 776–798.
Duan, Q., Li, X., Zhang, H., and Belytschko, T. (2012). “Second-order accurate derivatives and integration schemes for meshfree methods.” Int. J. Numer. Methods Eng., 92(4), 399–424.
Duarte, C. A. M., Babuška, I., and Oden, J. T. (2000). “Generalized finite element methods for three-dimensional structural mechanics problems.” Comput. Struct., 77(2), 215–232.
Duarte, C. A. M., and Kim, D. J. (2008). “Analysis and applications of a generalized finite element method with global-local enrichment functions.” Comput. Methods Appl. Mech. Eng., 197(6–8), 487–504.
Duarte, C. A. M., and Oden, J. T. (1996a). “An h-p adaptive method using clouds.” Comput. Methods Appl. Mech. Eng., 139(1–4), 237–262.
Duarte, C. A. M., and Oden, J. T. (1996b). “H-p clouds—An h-p meshless method.” Numer. Methods Partial Differ. Equ., 12(6), 673–705.
Duflot, M., and Nguyen-Dang, H. (2002). “A truly meshless Galerkin method based on a moving least squares quadrature.” Commun. Numer. Methods Eng., 18(6), 441–449.
Dyka, C. T., and Ingel, R. P. (1995). “An approach for tension instability in smoothed particle hydrodynamics (SPH).” Comput. Struct., 57(4), 573–580.
Dyka, C. T., Randles, P. W., and Ingel, R. P. (1997). “Stress points for tension instability in SPH.” Int. J. Numer. Methods Eng., 40(13), 2325–2341.
Fasshauer, G. E. (1999). “Solving differential equations with radial basis functions: Multilevel methods and smoothing.” Adv. Comput. Math., 11(2–3), 139–159.
Fernández-Méndez, S., and Huerta, A. (2004). “Imposing essential boundary conditions in mesh-free methods.” Comput. Methods Appl. Mech. Eng., 193(12), 1257–1275.
Fleming, M., Chu, Y. A., Moran, B., and Belytschko, T. (1997). “Enriched element-free Galerkin methods for crack tip fields.” Int. J. Numer. Methods Eng., 40(8), 1483–1504.
Foster, J. T., Silling, S. A., and Chen, W. W. (2010). “Viscoplasticity using peridynamics.” Int. J. Numer. Methods Eng., 81(10), 1242–1258.
Franke, C., and Schaback, R. (1998). “Solving partial differential equations by collocation using radial basis functions.” Appl. Math. Comput., 93(1), 73–82.
Franke, R. (1982). “Scattered data interpolation: Tests of some methods.” Math. Comput., 38(157), 181–200.
Frazer, R. A., Jones, W. N. P., and Skan, S. W. (1937). “Approximations to functions and to the solutions of differential equations.” HSMO, London.
Fries, T. P., and Belytschko, T. (2008). “Convergence and stabilization of stress-point integration in mesh-free and particle methods.” Int. J. Numer. Methods Eng., 74(7), 1067–1087.
Fries, T. P., and Matthias, H. (2006a). “A stabilized and coupled meshfree/meshbased method for the incompressible Navier-Stokes equations—Part I: Stabilization.” Comput. Methods Appl. Mech. Eng., 195(44), 6205–6224.
Fries, T. P., and Matthias, H. (2006b). “A stabilized and coupled meshfree/meshbased method for the incompressible Navier-Stokes equations—Part II: Coupling.” Comput. Methods Appl. Mech. Eng., 195(44–47), 6191–6204.
Fukagawa, R., Sako, K., Bui, H. H., and Wells, J. C. (2011). “Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH).” Géotechnique, 61(7), 565–574.
Ghorashi, S. S., Valizadeh, N., and Mohammadi, S. (2012). “Extended isogeometric analysis for simulation of stationary and propagating cracks.” Int. J. Numer. Methods Eng., 89(9), 1069–1101.
Gingold, R. A., and Monaghan, J. J. (1977). “Smoothed particle hydrodynamics: Theory and application to non-spherical stars.” Oxford University Press, Oxford, U.K., 375–389.
González, D., Cueto, E., and Doblaré, M. (2010). “A higher order method based on local maximum entropy approximation.” Int. J. Numer. Methods Eng., 83(6), 741–764.
Gosz, J., and Liu, W. K. (1996). “Admissible approximations for essential boundary conditions in the reproducing kernel particle method.” Comput. Mech., 19(1), 120–135.
Griebel, M., and Schweitzer, M. A. (2000). “A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs.” SIAM J. Sci. Comput., 22(3), 853–890.
Griebel, M., and Schweitzer, M. A. (2002a). “A particle-partition of unity method—Part II: Efficient cover construction and reliable integration.” SIAM J. Sci. Comput., 23(5), 1655–1682.
Griebel, M., and Schweitzer, M. A. (2002b). “A particle-partition of unity method—Part III: A multilevel solver.” SIAM J. Sci. Comput., 24(2), 377–409.
Griebel, M., and Schweitzer, M. A. (2003b). “A particle-partition of unity method. Part V: Boundary conditions.” Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 1–25.
Griebel, M., and Schweitzer, M. A. (2003a). “A particle-partition of unity method. Part IV: Parallelization.” Meshfree methods for partial differential equations, Springer, New York, 161–192.
Guan, P. C. (2009). “Adaptive coupling of FEM and RKPM formulations for contact and impact problems.” Ph.D. dissertation, Univ. of California, Los Angeles.
Guan, P. C., et al. (2009). “Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations.” Mech. Mater., 41(6), 670–683.
Guan, P. C., Chi, S. W., Chen, J. S., Slawson, T. R., and Roth, M. J. (2011). “Semi-Lagrangian reproducing kernel particle method for fragment-impact problems.” Int. J. Impact Eng., 38(12), 1033–1047.
Günther, F. C., and Liu, W. K. (1998). “Implementation of boundary conditions for meshless methods.” Comput. Methods Appl. Mech. Eng., 163(1–4), 205–230.
Günther, F. C., Liu, W. K., Diachin, D., and Christon, M. A. (2000). “Multi-scale meshfree parallel computations for viscous, compressible flows.” Comput. Methods Appl. Mech. Eng., 190(3–4), 279–303.
Gupta, V., Duarte, C. A. M., Babuška, I., and Banerjee, U. (2013). “A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics.” Comput. Methods Appl. Mech. Eng., 266, 23–39.
Gupta, V., Duarte, C. A. M., Babuška, I., and Banerjee, U. (2015). “Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics.” Comput. Methods Appl. Mech. Eng., 289, 355–386.
Gupta, V., Kim, D. J., and Duarte, C. A. M. (2012). “Analysis and improvements of global-local enrichments for the generalized finite element method.” Comput. Methods Appl. Mech. Eng., 245–246, 47–62.
Han, W., and Meng, X. (2001). “Error analysis of the reproducing kernel particle method.” Comput. Methods Appl. Mech. Eng., 190(46–47), 6157–6181.
Han, W., Wagner, G. J., and Liu, W. K. (2002). “Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh-free method.” Int. J. Numer. Methods Eng., 53(6), 1323–1336.
Hardy, R. L. (1971). “Multiquadric equations of topography and other irregular surfaces.” J. Geophys. Res., 76(8), 1905–1915.
Hardy, R. L. (1990). “Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988.” Comput. Math. Appl., 19(8), 163–208.
Harlow, F. H. (1964). “The particle-in-cell computing method for fluid dynamics.” Methods in computational physics, Academic Press, New York, 319–343.
Hillman, M., and Chen, J. S. (2015). “An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics.” Int. J. Numer. Methods Eng., 107(7), 603–630.
Hillman, M., and Chen, J. S. (2016). “Nodally integrated implicit gradient reproducing kernel particle method for convection dominated problems.” Comput. Methods Appl. Mech. Eng., 299, 381–400.
Hillman, M., Chen, J. S., and Bazilevs, Y. (2015). “Variationally consistent domain integration for isogeometric analysis.” Comput. Methods Appl. Mech. Eng., 284, 521–540.
Hillman, M., Chen, J. S., and Chi, S. W. (2014). “Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems.” Comp. Part. Mech, 1(3), 245–256.
Hon, Y. C., and Schaback, R. (2001). “On unsymmetric collocation by radial basis functions.” Appl. Math. Comput., 119(2–3), 177–186.
Hu, H. Y., Chen, J. S., and Hu, W. (2007). “Weighted radial basis collocation method for boundary value problems.” Int. J. Numer. Methods Eng., 69(13), 2736–2757.
Hu, H. Y., Chen, J. S., and Hu, W. (2011). “Error analysis of collocation method based on reproducing kernel approximation.” Numer. Methods Partial Differ. Equ., 27(3), 554–580.
Hu, H. Y., Lai, C. K., and Chen, J. S. (2009). “A study on convergence and complexity of reproducing kernel collocation method.” Interact. Multiscale Mech., 2(3), 295–319.
Hu, H. Y., Li, Z. C., and Cheng, A. H. D. (2005). “Radial basis collocation methods for elliptic boundary value problems.” Comput. Math. Appl., 50(1), 289–320.
Huerta, A., and Fernández-Méndez, S. (2003). “Time accurate consistently stabilized mesh-free methods for convection dominated problems.” Int. J. Numer. Methods Eng., 56(9), 1225–1242.
Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y. (2005). “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.” Comput. Methods Appl. Mech. Eng., 194(39–41), 4135–4195.
Idelsohn, S. R., Calvo, N., and Oñate, E. (2003a). “Polyhedrization of an arbitrary 3D point set.” Comput. Methods Appl. Mech. Eng., 192(22), 2649–2667.
Idelsohn, S. R., Marti, J., Becker, P., and Oñate, E. (2014). “Analysis of multifluid flows with large time steps using the particle finite element method.” Int. J. Numer. Methods Fluids, 75(9), 621–644.
Idelsohn, S. R., Nigro, N., Limache, A., and Oñate, E. (2012). “Large time-step explicit integration method for solving problems with dominant convection.” Comput. Methods Appl. Mech. Eng., 217–220, 168–185.
Idelsohn, S. R., Oñate, E., Calvo, N., and Del Pin, F. (2003f). “The meshless finite element method.” Int. J. Numer. Methods Eng., 58(6), 893–912.
Idelsohn, S. R., Oñate, E., and Del Pin, F. (2003b). “A Lagrangian meshless finite element method applied to fluid-structure interaction problems.” Comput. Struct., 81(8-11), 655–671.
Idelsohn, S. R., Oñate, E., and Del Pin, F. (2004). “The particle finite element method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves.” Int. J. Numer. Methods Eng., 61(7), 964–989.
Jaynes, E. T. (1957). “Information theory and statistical mechanics.” Phys. Rev., 106(4), 620–630.
Jensen, P. S. (1972). “Finite difference techniques for variable grids.” Comput. Struct., 2(1–2), 17–29.
Johnson, G. R. (1994). “Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations.” Nucl. Eng. Des., 150(2–3), 265–274.
Johnson, G. R. (2011). “Numerical algorithms and material models for high-velocity impact computations.” Int. J. Impact Eng., 38(6), 456–472.
Johnson, G. R., Beissel, S. R., and Gerlach, C. A. (2013). “A combined particle-element method for high-velocity impact computations.” Proc. Eng., 58, 269–278.
Johnson, G. R., Beissel, S. R., and Stryk, R. A. (2000). “A generalized particle algorithm for high velocity impact computations.” Comput. Mech., 25(2–3), 245–256.
Johnson, G. R., Beissel, S. R., and Stryk, R. A. (2002). “An improved generalized particle algorithm that includes boundaries and interfaces.” Int. J. Numer. Methods Eng., 53(4), 875–904.
Johnson, G. R., Stryk, R. A., and Beissel, S. R. (1996). “SPH for high velocity impact computations.” Comput. Methods Appl. Mech. Eng., 139(1–4), 347–373.
Johnson, G. R., Stryk, R. A., and Dodd, J. G. (1986). “Dynamic Lagrangian computations for solids, with variable nodal connectivity for severe distortions.” Int. J. Numer. Methods Eng., 23(3), 509–522.
Kaljevic, I., and Saigal, S. (1997). “An improved element free Galerkin formulation.” Int. J. Numer. Methods Eng., 40(16), 2953–2974.
Kansa, E. J. (1990a). “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I. Surface approximations and partial derivative estimates.” Comput. Math. Appl., 19(8), 127–145.
Kansa, E. J. (1990b). “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II. Solutions to parabolic, hyperbolic and elliptic partial differential equations.” Comput. Math. Appl., 19(8), 147–161.
Kansa, E. J., and Hon, Y. C. (2000). “Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations.” Comput. Math. Appl., 39(7–8), 123–137.
Khayyer, A., and Gotoh, H. (2010). “A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method.” Appl. Ocean Res., 32(1), 124–131.
Khayyer, A., and Gotoh, H. (2011). “Enhancement of stability and accuracy of the moving particle semi-implicit method.” J. Comput. Phys., 230(8), 3093–3118.
Kim, D. J., Pereira, J. P. A., and Duarte, C. A. M. (2010). “Analysis of three-dimensional fracture mechanics problems: A two-scale approach using coarse-generalized FEM meshes.” Int. J. Numer. Methods Eng., 81(3), 335–365.
Kim, J., and Duarte, C. A. M. (2015). “A new generalized finite element method for two-scale simulations of propagating cohesive fractures in 3-D.” Int. J. Numer. Methods Eng., 104(13), 1139–1172.
Kim, N. H., Choi, K. K., and Chen, J. S. (2000a). “Shape design sensitivity analysis and optimization of elasto-plasticity with frictional contact.” AIAA J., 38(9), 1742–1753.
Kim, N. H., Choi, K. K., and Chen, J. S. (2001). “Die shape design optimization of sheet metal stamping process using meshfree method.” Int. J. Numer. Methods Eng., 51(12), 1385–1405.
Kim, N. H., Choi, K. K., Chen, J. S., and Park, Y. H. (2000g). “Meshless shape design sensitivity analysis and optimization for contact problem with friction.” Comput. Mech., 25(2-3), 157–168.
Kondo, M., and Koshizuka, S. (2011). “Improvement of stability in moving particle semi-implicit method.” Int. J. Numer. Methods Fluids, 65(6), 638–654.
Koshizuka, S., Ikeda, H., and Oka, Y. (1999). “Numerical analysis of fragmentation mechanisms in vapor explosions.” Nucl. Eng. Des., 189(1), 423–433.
Koshizuka, S., Nobe, A., and Oka, Y. (1998). “Numerical analysis of breaking waves using the moving particle semi-implicit method.” Int. J. Numer. Methods Fluids, 26(7), 751–769.
Koshizuka, S., and Oka, Y. (1996). “Moving-particle semi-implicit method for fragmentation of incompressible fluid.” Nucl. Sci. Eng., 123(3), 421–434.
Krongauz, Y., and Belytschko, T. (1996). “Enforcement of essential boundary conditions in meshless approximations using finite elements.” Comput. Methods Appl. Mech. Eng., 131(1–2), 133–145.
Krongauz, Y., and Belytschko, T. (1997). “Consistent pseudo-derivatives in meshless methods.” Comput. Methods Appl. Mech. Eng., 146(3–4), 371–386.
Krysl, P., and Belytschko, T. (1995). “Analysis of thin plates by the element-free Galerkin method.” Comput. Mech., 17(1–2), 26–35.
Krysl, P., and Belytschko, T. (1996). “Analysis of thin shells by the element-free Galerkin method.” Int. J. Solids Struct., 33(20-22), 3057–3080.
Kwok, O. L. A., Guan, P. C., Cheng, W. P., and Sun, C. T. (2015). “Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation.” KSCE J. Civ. Eng., 19(1), 107–115.
Lancaster, P., and Salkauskas, K. (1981). “Surfaces generated by moving least squares methods.” Math. Comput., 37(155), 141–158.
Lanczos, C. (1938). “Trigonometric interpolation of empirical and analytical functions.” J. Math. Phys., 17(1), 123–199.
Li, B., Habbal, F., and Ortiz, M. (2010). “Optimal transportation meshfree approximation schemes for fluid and plastic flows.” Int. J. Numer. Methods Eng., 83(12), 1541–1579.
Li, B., Kidane, A., Ravichandran, G., and Ortiz, M. (2012). “Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics.” Int. J. Impact Eng., 42, 25–36.
Li, B., Perotti, L., Adams, M., Mihaly, J., Rosakis, A. J., Stalzer, M., and Ortiz, M. (2013). “Large scale optimal transportation meshfree (OTM) simulations of hypervelocity impact.” Proc. Eng., 58, 320–327.
Li, J. (2005). “Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions.” Adv. Comput. Math., 23(1–2), 21–30.
Li, S., Hao, W., and Liu, W. K. (2000a). “Mesh-free simulations of shear banding in large deformation.” Int. J. Solids Struct., 37(48–50), 7185–7206.
Li, S., Hao, W., and Liu, W. K. (2000b). “Numerical simulations of large deformation of thin shell structures using meshfree methods.” Comput. Mech., 25(2-3), 102–116.
Li, S., and Liu, W. K. (1996). “Moving least-square reproducing kernel method. Part II: Fourier analysis.” Comput. Methods Appl. Mech. Eng., 139(1–4), 159–193.
Li, S., and Liu, W. K. (1998). “Synchronized reproducing kernel interpolant via multiple wavelet expansion.” Comput. Mech., 21(1), 28–47.
Li, S., and Liu, W. K. (1999a). “Reproducing kernel hierarchical partition of unity. Part II—Applications.” Int. J. Numer. Methods Eng., 45(3), 289–317.
Li, S., and Liu, W. K. (1999b). “Reproducing kernel hierarchical partition of unity. Part I—Formulation and theory.” Int. J. Numer. Methods Eng., 45(3), 251–288.
Li, S., and Liu, W. K. (2007). Meshfree particle methods, Springer, Berlin.
Li, S., Liu, W. K., Qian, D., and Guduru, P. R. (2001). “Dynamic shear band propagation and micro-structure of adiabatic shear band.” Comput. Methods Appl. Mech. Eng., 191(1-2), 73–92.
Li, S., Liu, W. K., Rosakis, A. J., Belytschko, T., and Hao, W. (2002). “Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition.” Int. J. Solids Struct., 39(5), 1213–1240.
Libersky, L. D., and Petschek, A. G. (1991). “Smooth particle hydrodynamics with strength of materials.” Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, Springer, Berlin, 248–257.
Libersky, L. D., Randles, P. W., Carney, T. C., and Dickinson, D. L. (1997). “Recent improvements in SPH modeling of hypervelocity impact.” Int. J. Impact Eng., 20(6–10), 525–532.
Liszka, T. J. (1984). “An interpolation method for an irregular net of nodes.” Int. J. Numer. Methods Eng., 20(9), 1599–1612.
Liszka, T. J., and Orkisz, J. (1980). “The finite difference method at arbitrary irregular grids and its application in applied mechanics.” Comput. Struct., 11(1–2), 83–95.
Liu, G. R. (2008). “A generalized gradient smoothing technique and the smoothed bilinear form for galerkin formulation of a wide class of computational methods.” Int. J. Comput. Methods, 05(02), 199–236.
Liu, G. R. (2009). Meshfree methods: Moving beyond the finite element method, CRC Press, Boca Raton, FL.
Liu, G. R., and Chen, X. L. (2001). “A mesh-free method for static and free vibration analyses of thin plates of complicated shape.” J. Sound Vibr., 241(5), 839–855.
Liu, G. R., Dai, K. Y., and Nguyen, T. T. (2007a). “A smoothed finite element method for mechanics problems.” Comput. Mech., 39(6), 859–877.
Liu, G. R., and Gu, Y. T. (2001). “A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids.” J. Sound Vibr., 246(1), 29–46.
Liu, G. R., and Nguyen-Thoi, T. (2010). Smoothed finite element methods, CRC Press, NJ.
Liu, G. R., Zhang, G. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y., and Han, X. (2007b). “A nodal integration technique for meshfree radial point interpolation method (NI-RPIM).” Int. J. Solids Struct., 44(11–12), 3840–3860.
Liu, W. K., and Chen, Y. (1995). “Wavelet and multiple scale reproducing kernel methods.” Int. J. Numer. Methods Fluids, 21(10), 901–931.
Liu, W. K., Chen, Y., Chang, C. T., and Belytschko, T. (1996a). “Advances in multiple scale kernel particle methods.” Comput. Mech., 18(2), 73–111.
Liu, W. K., Chen, Y., Jun, S., Chen, J. S., Belytschko, T., Pan, C., Uras, R. A., and Chang, C. T. (1996b). “Overview and applications of the reproducing kernel particle methods.” Archiv. Comput. Methods Eng., 3(1), 3–80.
Liu, W. K., Chen, Y., Uras, R. A., and Chang, C. T. (1996c). “Generalized multiple scale reproducing kernel particle methods.” Comput. Methods Appl. Mech. Eng., 139(1–4), 91–157.
Liu, W. K., Han, W., Lu, H., Li, S., and Cao, J. (2004). “Reproducing kernel element method. Part I: Theoretical formulation.” Comput. Methods Appl. Mech. Eng., 193(12–14), 933–951.
Liu, W. K., Hao, W., Chen, Y., Jun, S., and Gosz, J. (1997a). “Multiresolution reproducing kernel particle methods.” Comput. Mech., 20(4), 295–309.
Liu, W. K., and Jun, S. (1998). “Multiple-scale reproducing kernel particle methods for large deformation problems.” Int. J. Numer. Methods Eng., 41(7), 1339–1362.
Liu, W. K., Jun, S., Li, S., Adee, J., and Belytschko, T. (1995a). “Reproducing kernel particle methods for structural dynamics.” Int. J. Numer. Methods Eng., 38(10), 1655–1679.
Liu, W. K., Jun, S., Sihling, D. T., Chen, Y. J., and Hao, W. (1997b). “Multiresolution reproducing kernel particle method for computational fluid dynamics.” Int. J. Numer. Methods Fluids, 24(12), 1391–1415.
Liu, W. K., Jun, S., and Zhang, Y. F. (1995b). “Reproducing kernel particle methods.” Int. J. Numer. Methods Fluids, 20(8–9), 1081-1106.
Liu, W. K., Li, S., and Belytschko, T. (1997c). “Moving least-square reproducing kernel methods. I: Methodology and convergence.” Comput. Methods Appl. Mech. Eng., 143(1–2), 113–154.
Liu, W. K., Ong, J. S. J., and Uras, R. A. (1985). “Finite element stabilization matrices-a unification approach.” Comput. Methods Appl. Mech. Eng., 53(1), 13–46.
Liu, Y., and Belytschko, T. (2010). “A new support integration scheme for the weakform in mesh-free methods.” Int. J. Numer. Methods Eng., 82(6), 699–715.
Long, S., and Atluri, S. N. (2001). “A meshless local petrov-galerkin method for solving the bending problem of a thin plate.” Comput. Model. Eng. Sci., 3(1), 53–63.
Lu, H., and Chen, J. S. (2002). “Adaptive Galerkin particle method.” Lect. Notes Comput. Sci. Eng., 26, 251–267.
Lu, Y. Y., Belytschko, T., and Gu, L. (1994). “A new implementation of the element free Galerkin method.” Comput. Methods Appl. Mech. Eng., 113(3–4), 397–414.
Lucy, L. B. (1977). “A numerical approach to the testing of the fission hypothesis.” Astron. J., 82, 1013–1024.
Ma, S., Zhang, X., and Qiu, X. M. (2009). “Comparison study of MPM and SPH in modeling hypervelocity impact problems.” Int. J. Impact Eng., 36(2), 272–282.
Madych, W. R. (1992). “Miscellaneous error bounds for multiquadric and related interpolators.” Comput. Math. Appl., 24(12), 121–138.
Madych, W. R., and Nelson, S. A. (1990). “Multivariate interpolation and conditionally positive definite functions II.” Math. Comput., 54(189), 211–230.
Melenk, J. M. (1995). “On generalized finite element methods.” Ph.D. dissertation, Univ. of Maryland, College Park, MD.
Melenk, J. M., and Babuška, I. (1996). “The partition of unity finite element method: Basic theory and applications.” Comput. Methods Appl. Mech. Eng., 139(1–4), 289–314.
Moës, N., Dolbow, J., and Belytschko, T. (1999). “A finite element method for crack growth without remeshing.” Int. J. Numer. Meth. Eng., 46(1), 131–150.
Monaghan, J. J. (1982). “Why particle methods work.” SIAM J. Sci. Stat. Comput., 3(4), 422–433.
Monaghan, J. J. (1988). “An introduction to SPH.” Comput. Phys. Commun., 48(1), 89–96.
Monaghan, J. J. (2000). “SPH without a tensile instability.” J. Comput. Phys., 159(2), 290–311.
Nagashima, T. (1999). “Node-by-node meshless approach and its applications to structural analyses.” Int. J. Numer. Methods Eng., 46(3), 341–385.
Nayroles, B., Touzot, G., and Villon, P. (1992). “Generalizing the finite element method: Diffuse approximation and diffuse elements.” Comput. Mech., 10(5), 307–318.
Nitsche, J. (1971). “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.” Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, Springer, Berlin, 9–15.
Oden, J. T., Duarte, C. A. M., and Zienkiewicz, O. C. (1998). “A new cloud-based hp finite element method.” Comput. Methods Appl. Mech. Eng., 153(1–2), 117–126.
Oñate, E., and Idelsohn, S. R. (1998). “A mesh-free finite point method for advective-diffusive transport and fluid flow problems.” Comput. Mech., 21(4–5), 283–292.
Oñate, E., Idelsohn, S. R., Zienkiewicz, O. C., and Taylor, R. L. (1996a). “A finite point method in computational mechanics: Applications to convective transport and fluid flow.” Int. J. Numer. Methods Eng., 39(22), 3839–3866.
Oñate, E., Idelsohn, S. R., Zienkiewicz, O. C., Taylor, R. L., Sacco, C., and Idelsohnl, S. (1996b). “A stabilized finite point method for analysis of fluid mechanics problems.” Comput. Methods Appl. Mech. Eng., 139(96), 315–346.
Parks, M. L., Lehoucq, R. B., Plimpton, S. J., and Silling, S. A. (2008). “Implementing peridynamics within a molecular dynamics code.” Comput. Phys. Commun., 179(11), 777–783.
Pereira, J. P. A., Kim, D. J., and Duarte, C. A. M. (2012). “A two-scale approach for the analysis of propagating three-dimensional fractures.” Comput. Mech., 49(1), 99–121.
Perrones, N., and Kao, R. (1974). “A general-finite difference method for arbitrary meshes.” Comput. Struct., 5(I), 45–57.
Puso, M. A., Chen, J. S., Zywicz, E., and Elmer, W. (2008). “Meshfree and finite element nodal integration methods.” Int. J. Numer. Methods Eng., 74(3), 416–446.
Puso, M. A., Zywicz, E., and Chen, J. S. (2007). “A new stabilized nodal integration approach.” Lect. Notes Comput. Sci. Eng., 57, 207–217.
Rabczuk, T., and Areias, P. M. A. (2006). “A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis.” Comput. Model. Eng. Sci., 16(2), 115–130.
Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007a). “A meshfree thin shell method for non-linear dynamic fracture.” Int. J. Numer. Methods Eng., 72(5), 524–548.
Rabczuk, T., and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” Int. J. Numer. Methods Eng., 61(13), 2316–2343.
Rabczuk, T., and Belytschko, T. (2005). “Adaptivity for structured meshfree particle methods in 2D and 3D.” Int. J. Numer. Methods Eng., 63(11), 1559–1582.
Rabczuk, T., and Belytschko, T. (2007). “A three-dimensional large deformation meshfree method for arbitrary evolving cracks.” Comput. Methods Appl. Mech. Eng., 196(29–30), 2777–2799.
Rabczuk, T., Bordas, S. P. A., and Zi, G. (2007i). “A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics.” Comput. Mech., 40(3), 473–495.
Rabczuk, T., and Eibl, J. (2003). “Simulation of high velocity concrete fragmentation using SPH/MLSPH.” Int. J. Numer. Methods Eng., 56(10), 1421–1444.
Rabczuk, T., Eibl, J., and Stempniewski, L. (2004). “Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method.” Eng. Fract. Mech., 71(4-6), 547–556.
Rabczuk, T., and Samaniego, E. (2008). “Discontinuous modelling of shear bands using adaptive meshfree methods.” Comput. Methods Appl. Mech. Eng., 197(6-8), 641–658.
Rabczuk, T., and Zi, G. (2007). “A meshfree method based on the local partition of unity for cohesive cracks.” Comput. Mech., 39(6), 743–760.
Rabczuk, T., Zi, G., Bordas, S. P. A., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Comput. Methods Appl. Mech. Eng., 199(37–40), 2437–2455.
Randles, P. W., and Libersky, L. D. (1996). “Smoothed particle hydrodynamics: Some recent improvements and applications.” Comput. Methods Appl. Mech. Eng. Comput. Methods Appl. Mech. Eng., 139(1–4), 375–408.
Randles, P. W., and Libersky, L. D. (2000). “Normalized SPH with stress points.” Int. J. Numer. Meth. Eng., 48(10), 1445–1462.
Ren, B., and Li, S. (2010). “Meshfree simulations of plugging failures in high-speed impacts.” Comput. Struct., 88(15–16), 909–923.
Romero, I., and Armero, F. (2002). “The partition of unity quadrature in meshless methods.” Int. J. Numer. Methods Eng., 54(7), 987–1006.
Rosolen, A., Millán, D., and Arroyo, M. (2013). “Second-order convex maximum entropy approximants with applications to high-order PDE.” Int. J. Numer. Methods Eng., 94(2), 150–182.
Rüter, M., Hillman, M., and Chen, J. S. (2013). “Corrected stabilized non-conforming nodal integration in meshfree methods.” Lect. Notes Comput. Sci. Eng., 75–92.
Sadeghirad, A., Brannon, R. M., and Burghardt, J. (2011). “A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations.” Int. J. Numer. Methods Eng., 86(12), 1435–1456.
Savitzky, A., and Golay, M. J. E. (1964). “Smoothing and differentiation of data by simplified least squares procedures.” Anal. Chem., 36(8), 1627–1639.
Shepard, D. (1968). “A two-dimensional interpolation function for irregularly-spaced data.” 23rd ACM National Conf., ACM, New York, 517–524.
Sherburn, J. A., Roth, M. J., Chen, J. S., and Hillman, M. (2015). “Meshfree modeling of concrete slab perforation using a reproducing kernel particle impact and penetration formulation.” Int. J. Impact Eng., 86, 96–110.
Sibson, R. (1980). “A vector identity for the Dirichlet tessellation.” Math. Proc. Cambridge Philos. Soc., 87(01), 151.
Silling, S. A. (2000). “Reformulation of elasticity theory for discontinuities and long-range forces.” J. Mech. Phys. Solids, 48(1), 175–209.
Silling, S. A., and Askari, E. (2005). “A meshfree method based on the peridynamic model of solid mechanics.” Comput. Struct., 83(17–18), 1526–1535.
Silling, S. A., Epton, M. A., Weckner, O., Xu, J., and Askari, E. (2007). “Peridynamic states and constitutive modeling.” J. Elast., 88(2), 151–184.
Silling, S. A., and Lehoucq, R. B. (2008). “Convergence of peridynamics to classical elasticity theory.” J. Elast., 93(1), 13–37.
Slater, J. (1934). “Electronic energy bands in metal.” Phys. Rev., 45(11), 794–801.
Strouboulis, T., Babuška, I., and Copps, K. (2000a). “The design and analysis of the generalized finite element method.” Comput. Methods Appl. Mech. Eng., 181(1–3), 43–69.
Strouboulis, T., Copps, K., and Babuška, I. (2000b). “The generalized finite element method: An example of its implementation and illustration of its performance.” Int. J. Numer. Methods Eng., 47(8), 1401–1417.
Strouboulis, T., Copps, K., and Babuška, I. (2001). “The generalized finite element method.” Comput. Methods Appl. Mech. Eng., 190(32), 4081–4193.
Sukumar, N. (2004). “Construction of polygonal interpolants: A maximum entropy approach.” Int. J. Numer. Methods Eng., 61(12), 2159–2181.
Sukumar, N. (2013). “Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons.” Comput. Methods Appl. Mech. Eng., 263, 27–41.
Sukumar, N., and Belytschko, T. (1998). “The natural element method in solid mechanics.” Int. J. Numer. Methods Eng., 43(5), 839–887.
Sulsky, D. L., Chen, Z., and Schreyer, H. L. (1994). “A particle method for history-dependent materials.” Comput. Methods Appl. Mech. Eng., 118(1–2), 179–196.
Sulsky, D. L., and Schreyer, H. L. (1996). “Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems.” Comput. Methods Appl. Mech. Eng., 139(1–4), 409–429.
Sulsky, D. L., Zhou, S. J., and Schreyer, H. L. (1995). “Application of a particle-in-cell method to solid mechanics.” Comput. Phys. Commun., 87(1–2), 236–252.
Swegle, J. W., Attaway, S. W., Heinstein, M. W., Mello, F. J., and Hicks, D. L. (1994). “An analysis of smoothed particle hydrodynamics.” Sandia National Labs, Albuquerque, NM.
Swegle, J. W., Hicks, D. L., and Attaway, S. W. (1995). “Smoothed particle hydrodynamics stability analysis.” J. Comput. Phys., 116(1), 123–134.
Sze, K. Y., Chen, J. S., Sheng, N., and Liu, X. H. (2004). “Stabilized conforming nodal integration: Exactness and variational justification.” Finite Elem. Anal. Des., 41(2), 147–171.
Taylor, G. (1948). “The use of flat-ended projectiles for determining dynamic yield stress. I: Theoretical considerations.” Proc. R. Soc. London A: Math. Phys. Eng. Sci., 194(1038), 289–299.
Tupek, M. R., Rimoli, J. J., and Radovitzky, R. (2013). “An approach for incorporating classical continuum damage models in state-based peridynamics.” Comput. Methods Appl. Mech. Eng., 263, 20–26.
Uras, R. A., Chang, C. T., Chen, Y., and Liu, W. K. (1997). “Multiresolution reproducing kernel particle methods in acoustics.” J. Comput. Acoust., 5(01), 71–94.
Ventura, G., Xu, J. X., and Belytschko, T. (2002). “A vector level set method and new discontinuity approximations for crack growth by EFG.” Int. J. Numer. Methods Eng., 54(6), 923–944.
Wagner, G. J., and Liu, W. K. (2000). “Application of essential boundary conditions in mesh-free methods: A corrected collocation method.” Int. J. Numer. Methods Eng., 47(8), 1367–1379.
Wang, D., and Chen, J. S. (2004). “Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation.” Comput. Methods Appl. Mech. Eng., 193(12–14), 1065–1083.
Wang, D., and Chen, J. S. (2008). “A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration.” Int. J. Numer. Methods Eng., 74(3), 368–390.
Wang, D., and Chen, P. (2014). “Quasi-convex reproducing kernel meshfree method.” Comput. Mech., 54(3), 689–709.
Wang, D., Li, Z., Li, L., and Wu, Y. (2011). “Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium.” Sci. China Technol. Sci., 54(3), 573–580.
Wang, D., and Peng, H. (2013). “A hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates.” Comput. Mech., 51(6), 1013–1029.
Wang, D., and Wu, J. (2016). “An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods.” Comput. Methods Appl. Mech. Eng., 298, 485–519.
Wang, H. P. (2000). “Meshfree smooth contact formulation and boundary condition treatments in multi-body contact.” Ph.D. dissertation, Univ. of Iowa, Iowa City, IA.
Wang, H. P., Wu, C. T., and Chen, J. S. (2014). “A reproducing kernel smooth contact formulation for metal forming simulations.” Comput. Mech., 54(1), 151–169.
Wang, J. G., and Liu, G. R. (2002). “A point interpolation meshless method based on radial basis functions.” Int. J. Numer. Methods Eng., 54(11), 1623–1648.
Wang, L., Chen, J. S., and Hu, H. Y. (2010). “Subdomain radial basis collocation method for fracture mechanics.” Int. J. Numer. Methods Eng., 83(7), 851–876.
Warren, T. L., Silling, S. A., Askari, A., Weckner, O., Epton, M. A., and Xu, J. (2009). “A non-ordinary state-based peridynamic method to model solid material deformation and fracture.” Int. J. Solids Struct., 46(5), 1186–1195.
Wei, H., Chen, J. S., and Hillman, M. (2016). “A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media.” Comput. Fluids, 141, 105–115.
Wendland, H. (1995). “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree.” Adv. Comput. Math., 4(1), 389–396.
Wendland, H. (1999). “Meshless Galerkin methods using radial basis functions.” Math. Comput. Am. Math. Soc., 68(228), 1521–1531.
Wilkins, M. L., and Guinan, M. W. (1973). “Impact of cylinders on a rigid boundary.” J. Appl. Phys., 44(3), 1200–1206.
Wong, A. S. M., Hon, Y. C., Li, T. S., Chung, S. L., and Kansa, E. J. (1999). “Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme.” Comput. Math. Appl., 37(8), 23–43.
Wu, C. T., Chen, J. S., Chi, L., and Huck, F. (2001). “Lagrangian meshfree formulation for analysis of geotechnical materials.” J. Eng. Mech., 440–449.
Wu, C. T., Chi, S. W., Koishi, M., and Wu, Y. (2016). “Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses.” Int. J. Numer. Methods Eng., 107, 3–30.
Wu, C. T., Koishi, M., and Hu, W. (2015). “A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method.” Comput. Mech., 56(1), 19–37.
Wu, C. T., Park, C. K., and Chen, J. S. (2011). “A generalized approximation for the meshfree analysis of solids.” Int. J. Numer. Methods Eng., 85(6), 693–722.
Wu, Y., Wang, D., and Wu, C. T. (2014). “Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method.” Theor. Appl. Fract. Mech., 72(1), 89–99.
Wu, Y., Wang, D., Wu, C. T., and Zhang, H. (2016). “A direct displacement smoothing meshfree particle formulation for impact failure modeling.” Int. J. Impact Eng., 87, 169–185.
Wu, Z., and Schaback, R. (1993). “Local error estimates for radial basis function interpolation of scattered data.” IMA J. Numer. Anal., 13(1), 13–27.
Yagawa, G., and Yamada, T. (1996). “Free mesh method: A new meshless finite element method.” Comput. Mech., V18(5), 383–386.
Yoo, J. W., Moran, B., and Chen, J. S. (2004). “Stabilized conforming nodal integration in the natural-element method.” Int. J. Numer. Methods Eng., 60(5), 861–890.
Yoon, J. (2001). “Spectral approximation orders of radial basis function interpolation on the Sobolev space.” SIAM J. Math. Anal., 33(4), 946–958.
Yoon, S., and Chen, J. S. (2002). “Accelerated meshfree method for metal forming simulation.” Finite Elem. Anal. Des., 38(10), 937–948.
Yoon, S., Wu, C. T., Wang, H. P., and Chen, J. S. (2001). “Efficient meshfree formulation for metal forming simulations.” J. Eng. Mater. Technol., 123(4), 462.
You, Y., Chen, J. S., and Lu, H. (2003). “Filters, reproducing kernel, and adaptive meshfree method.” Comput. Mech., 31(3), 316–326.
Yreux, E., and Chen, J. S. (2016). “A quasi-linear reproducing kernel particle method.” Int. J. Numer. Methods Eng., 109(7), 1045–1064.
Zhang, L. T., Wagner, G. J., and Liu, W. K. (2002). “A parallelized meshfree method with boundary enrichment for large-scale CFD.” J. Comput. Phys., 176(2), 483–506.
Zhang, X., Sze, K. Y., and Ma, S. (2006). “An explicit material point finite element method for hyper-velocity impact.” Int. J. Numer. Methods Eng., 66(4), 689–706.
Zhu, T. L., and Atluri, S. N. (1998). “A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method.” Comput. Mech., 21(3), 211–222.
Zhu, T. L., Zhang, J. D., and Atluri, S. N. (1998). “A local boundary integral equation (LBIE) method in computational mechanics a meshless discretization approach.” Comput. Mech., 21(3), 223–235.
Zhuang, X., Augarde, C., and Bordas, S. P. A. (2011). “Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling.” Int. J. Numer. Methods Eng., 86(2), 249–268.
Zhuang, X., Zhu, H., and Augarde, C. (2014). “An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function.” Comput. Mech., 53(2), 343–357.
Zienkiewicz, O. C., and Taylor, R. L. (1977). The finite element method, McGraw-Hill, London.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 143Issue 4April 2017

History

Received: May 16, 2016
Accepted: Aug 9, 2016
Published ahead of print: Jan 20, 2017
Published online: Jan 23, 2017
Published in print: Apr 1, 2017
Discussion open until: Jun 23, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Jiun-Shyan Chen, M.ASCE [email protected]
Prager Professor, Dept. of Structural Engineering, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (corresponding author). E-mail: [email protected]
Michael Hillman
Kimball Assistant Professor, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802.
Sheng-Wei Chi
Assistant Professor, Dept. of Civil and Materials Engineering, Univ. of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share