Technical Papers
Sep 10, 2012

Buckling of Generic Higher-Order Shear Beam/Columns with Elastic Connections: Local and Nonlocal Formulation

Publication: Journal of Engineering Mechanics
Volume 139, Issue 8

Abstract

In this paper, the buckling behavior of generic higher-order shear beam models is investigated in a unified framework. This paper shows that most higher-order shear beam models developed in the literature (polynomial, sinusoidal, exponential shear strain distribution assumptions over the cross section) can be classified in a common gradient elasticity Timoshenko theory, whatever the shear strain distribution assumptions over the cross section. The governing equations of the bending/buckling problem are obtained from a variational approach, leading to a generic sixth-order differential equation. Buckling solutions are presented for usual archetypal boundary conditions such as pinned-pinned, clamped-free, clamped-hinge, and clamped-clamped boundary conditions. The results are then extended to general boundary conditions based on generalized linear elastic connection law including vertical and rotational stiffness boundary conditions. Engineering analytical solutions are derived in a dimensionless format. The model valid for macrostructures is generalized for micro- or nanostructures using the nonlocal integral Eringen’s model. The nonlocal framework is also developed in a variational consistent framework. Buckling solutions are finally presented for the nonlocal higher-order beam/colum models.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant No. PIEF-GA-2010-271610 STABELAS.

References

Absi, E. (1967). “Equations intrinsèques d’une poutre droite à section constante compte tenu des effets des efforts tranchants et normaux.” Ann. Inst. Tech. Bâtiment Travaux Publics, 229, 151–167 (in French).
Ait Atmane, H., Tounsi, A., Mechab, I., and Adda Bedia, E. (2010). “Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory.” Int. J. Mech. Mater. Des., 6(2), 113–121.
Akgöz, B., and Civalek, O. (2011). “Strain gradient elasticity and modified coupled stress models for buckling analysis of axially loaded micro-scaled beams.” Int. J. Eng. Sci., 49(11), 1268–1280.
Alfutov, N. A. (2000). Stability of elastic structures, Springer-Verlag, Berlin.
Aristizabal-Ochoa, J. D. (2004). “Large deflection stability of slender beam-columns with semi-rigid connections: elastica approach.” J. Eng. Mech., 130(3), 274–282.
Aristizabal-Ochoa, J. D. (2012). “Matrix method for stability and second-order analysis of Timoshenko beam-column structures with semi-rigid connections.” Eng. Structures, 34, 289–302.
Atanackovic, T. M. (1989). “Stability of a compressible elastic rod with imperfections.” Acta Mech., 76(3–4), 203–222.
Atanackovic, T. M., and Spasic, D. T. (1994). “A model for plane elastica with simple shear deformation pattern.” Acta Mech., 104(3–4), 241–253.
Aydogdu, M. (2009). “A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration.” Physica E, 41(9), 1651–1655.
Banerjee, J. R., and Williams, F. W. (1994). “The effect of shear deformation on the critical buckling of columns.” J. Sound Vibrat., 174(5), 607–616.
Bažant, Z. P. (1971). “A correlation study of formulations of incremental deformation and stability of continuous bodies.” J. Appl. Mech., 38(4), 919–928.
Bažant, Z. P., and Cedolin, L. (2003). Stability of structures: Elastic, inelastic, fracture, and damage theories, Dover Publications, New York.
Bickford, W. B. (1982). “A consistent higher order beam theory.” Dev. Theoret. Appl. Mech., 11, 137–150.
Bresse, M. (1859). Cours de mécanique appliquée, Mallet-Bachelier, Paris (in French).
Challamel, N. (2011). “Higher-order shear beam theories and enriched continuum.” Mech. Res. Commun., 38(5), 388–392.
Challamel, N., and Girhammar, U. A. (2011). “Variationally-based theories for buckling of partially composite beam-columns including shear and axial effects.” Eng. Structures, 33(8), 2297–2319.
Challamel, N., Meftah, S. A., and Bernard, F. (2010). “Buckling of elastic beams on nonlocal foundation: a revisiting of Reissner model.” Mech. Res. Commun., 37(5), 472–475.
Challamel, N., and Wang, C. M. (2008). “The small length scale effect for a non-local cantilever beam: a paradox solved.” Nanotechnology, 19(34), 345703.
Dufort, L., Drapier, S., and Grédiac, M. (2001). “Closed-form solution for the cross-section warping in short beams under three-point bending.” Compos. Struct., 52(2), 233–246.
Elishakoff, I., et al. (2012). Carbon nanotubes and nanosensors: Vibrations, buckling and ballistic impact, ISTE Wiley, New York.
El Meiche, N., Tounsi, A., Ziane, N., Mechab, I., and Adda Bedia, E. A. (2011). “A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate.” Int. J. Mech. Sci., 53(4), 237–247.
Engesser, F. (1889). “Über die Knickfestigkeit gerader Stäbe.” Zeitschrift Architekten Ingenieurwesen, 35(4), 455–462.
Eringen, A. C. (1983). “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.” J. Appl. Phys., 54, 4703–4710.
Galambos, T. V., and Surovek, A. E. (2008). Structural stability of steel: Concepts and applications for structural engineers, Wiley, New York.
Germain, P. (1973). “La méthode des puissances virtuelles en mécanique des milieux continus—Première partie: Théorie du second gradient.” J. Mec., 12(2), 235–274.
Gurfinkel, G., and Robinson, A. R. (1965). “Buckling of elastically restrained columns.” J. Struct. Div., 91(6), 159–183.
Haringx, J. A. (1942). “On the buckling and lateral rigidity of helical springs.” Proc. Konink. Ned. Akad. Wetenschap., 45, 533.
Hellesland, J. (2007). “Mechanics and effective lengths of columns with positive and negative end restraints.” Eng. Structures, 29(12), 3464–3474.
Ji, W., Waas, A. M., and Bažant, Z. P. (2010). “Errors caused by non-work-conjugate stress and strain measures and necessary corrections in finite element programs.” J. Appl. Mech., 77(4), 044504.
Kaczkowski, Z. (1968). Plates, statistical calculations, Arkady, Warsaw, Poland.
Karama, M., Afaq, K. S., and Mistou, S. (2003). “Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity.” Int. J. Solids Struct., 40(6), 1525–1546.
Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. (2003). “Experiments and theory in strain gradient elasticity.” J. Mech. Phys. Solids, 51(8), 1477–1508.
Lazopoulos, K. A., and Lazopoulos, A. K. (2010). “Bending and buckling of thin strain gradient elastic beams.” Eur. J. Mech. A, Solids, 29(5), 837–843.
Levinson, M. (1981). “A new rectangular beam theory.” J. Sound Vibrat., 74(6), 343–350.
Levinson, M. (1985). “On Bickford’s consistent higher-order beam theory.” Mech. Res. Commun., 12(1), 1–9.
L’Hermite, R. (1976). Flambage et stabilité: Le flambage élasto-plastique des colonnes et systèmes de barres droites, Eyrolles, Paris (in French).
Mechab, I. (2009).”Etude des structures composites en utilisant les theories d’ordre élevé sous chargement thermomécanique.” Ph.D. thesis, Univ. of Sidi Bel Abbes, Sidi Bel Abbes, Algeria (in French).
Panc, V. (1975). Theories of elastic plates, Noordhoff, Leyden, Netherlands.
Papargyri-Beskou, S., Tsepoura, K. G., Polyzos, D., and Beskos, D. E. (2003). “Bending and stability analysis of gradient elastic beams.” Int. J. Solids Struct., 40(2), 385–400.
Peddieson, J., Buchanan, G. R., and McNitt, R. P. (2003). “Application of nonlocal continuum models to nanotechnology.” Int. J. Eng. Sci., 41(3–5), 305–312.
Pflüger, A. (1964). Stabililätsprobleme der elastostatik, Springer-Verlag, New York.
Phungpaingam, B., and Chucheepsakul, S. (2005). “Post-buckling of an elastic column with various end restraints.” Int. J. Struct. Stab. Dyn., 5(1), 113–123.
Plantema, F. J. (1966). Sandwich construction, Wiley, New York.
Reddy, J. N. (1984). “A simple higher-order theory for laminated composite plates.” J. Appl. Mech., 51(4), 745–752.
Reddy, J. N. (2007). “Nonlocal theories for bending, buckling and vibration of beams.” Int. J. Eng. Sci., 45(2–8), 288–307.
Reissner, E. (1975). “On transverse bending of plates, including the effects of transverse shear deformation.” Int. J. Solids Struct., 11(5), 495–502.
Reissner, E. (1982). “Some remarks on the problem of Euler buckling.” Ing. Archiv., 52, 115–119.
Shi, G. (2007). “A new simple third-order shear deformation theory of plates.” Int. J. Solids Struct., 44(13), 4399–4417.
Shi, G., and Voyiadjis, G. Z. (2011). “A sixth-order theory of shear deformable beams with variational consistent boundary conditions.” J. Appl. Mech., 78(021019), 1–11.
Simitses, G. J., and Hodges, D. H. (2006). Fundamentals of structural stability, Elsevier, Burlington, MA.
Sudak, L. J. (2003). “Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics.” J. Appl. Phys., 94(11), 7281–7287.
Timoshenko, S. P. (1921). “On the correction for shear of the differential equation for transverse vibrations of prismatic bars.” Philos. Mag., 41, 744–746.
Timoshenko, S. P. (1922). “On the transverse vibration of bars with uniform cross-section.” Philos. Mag., 43, 125–131.
Timoshenko, S. P., and Gere, J. M. (1961). Theory of elastic stability, McGraw Hill, New York.
Tounsi, A., Heireche, H., Berrabah, H. M., Benzair, A. and Boumia, L. (2008). “Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field.” J. Appl. Physics, 104(10), 104301.
Touratier, M. (1991). “An efficient standard plate theory.” Int. J. Eng. Sci., 29(8), 901–916.
Vaz, M. A., and Silva, D. F. C. (2003). “Post-buckling analysis of slender elastic rods subjected to terminal forces.” Int. J. Non-linear Mech., 38(4), 483–492.
Voyiadjis, G. Z., and Shi, G. (1991). “A refined two-dimensional theory for thick cylindrical shells.” Int. J. Solids Struct., 27(3), 261–282.
Wang, C. M., Reddy, J. N., and Lee, K. H. (2000). Shear deformable beams and plates: Relationships with classical solutions, Elsevier, Oxford, U.K.
Wang, C. M., Wang, C. Y., and Reddy, J. N. (2005). Exact solutions for buckling of structural members, CRC Press, Boca Raton, FL.
Wang, C. M., Zhang, Y .Y. and He, X. Q. (2007a). “Vibration of nonlocal Timoshenko beams.” Nanotechnology, 18(10), 105401.
Wang, C. M., Zhang, Y. Y., and Kitipornchai, S. (2007b). “Vibration of initially stressed micro-and nano-beams.” Int. J. Struct. Stab. Dyn., 7(4), 555–570.
Wang, C. M., Zhang, Y. Y., Ramesh, S. S., and Kitipornchai, S. (2006). “Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory.” J. Phys. D Appl. Phys., 39, 3904–3909.
Wang, C. M., Zhang, Y. Y., Xiang, Y., and Reddy, J. N. (2010). “Recent studies on buckling of carbon nanotubes.” Appl. Mech. Rev., 63(030804), 1–18.
Yoo, C. H., and Lee, S. C. (2011). Stability of structures: Principles and applications, Elsevier, New York.
Younis, C. J., and Panayotounakos, D. E. (1993). “Elastica of an axially loaded column/footing system resting on elastic base.” Int. J. Non-linear Mech, 28(6), 737–751.
Yu, W., and Hodges, D. H. (2005). “Generalized Timoshenko theory of the variational asymptotic beam sectional analysis.” J. Am. Helicopter Soc., 50(1), 46–55.
Zhang, Y. Q., Liu, G. R., and Wang, J. S. (2004). “Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression.” Phys. Rev. B, 70(20), 205430.
Zhang, Y. Q., Liu, G. R., and Xie, X. Y. (2005). “Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity.” Phys. Rev. B, 71(19), 195404.
Zhang, Y. Y., Wang, C. M., and Challamel, N. (2010). “Bending, buckling and vibration of hybrid nonlocal beams.” J. Eng. Mech., 136(5), 562–574.
Ziegler, H. (1982). “Arguments for and against Engesser's buckling formulas.” Ingenieur Archiv, 52, 105–113.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 139Issue 8August 2013
Pages: 1091 - 1109

History

Received: Sep 16, 2011
Accepted: Sep 7, 2012
Published online: Sep 10, 2012
Published in print: Aug 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Noël Challamel, Aff.M.ASCE [email protected]
Professor of Civil Engineering, Univ. Européenne de Bretagne, Univ. of South Brittany UBS–LIMATB Centre de Recherche, 56321 Lorient Cedex, France; formerly, Mechanics Division, Dept. of Mathematics, Univ. of Oslo, Blindern, NO-0316 Oslo, Norway (corresponding author). E-mail: [email protected]
Ismail Mechab [email protected]
Associate Professor, Laboratoire des Matériaux et Hydrologie, Univ. de Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria. E-mail: [email protected]
Noureddine Elmeiche [email protected]
Associate Professor, Laboratoire des Matériaux et Hydrologie, Univ. de Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria. E-mail: [email protected]
Mohammed Sid Ahmed Houari [email protected]
Associate Professor, Laboratoire des Matériaux et Hydrologie, Univ. de Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria. E-mail: [email protected]
Mohammed Ameur [email protected]
Associate Professor, Laboratoire des Matériaux et Hydrologie, Univ. de Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria. E-mail: [email protected]
Hassen Ait Atmane [email protected]
Associate Professor, Laboratoire des Matériaux et Hydrologie, Univ. de Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share