State-of-the-Art Reviews
Aug 30, 2022

Membranes in Zero-Liquid-Discharge Systems for Efficient Processes toward Sustainable Environment: A Review

Publication: Journal of Environmental Engineering
Volume 148, Issue 11

Abstract

With growing environmental concern over the pollutants being disposed of and the consequent pollution of surface water/ground water, the stringent environmental regulation called zero-liquid-discharge effluent treatment has gained popularity. Zero-liquid-discharge effluent treatment technologies avoid the liquid effluent being released outside the plant and can reuse water, which is an important commodity for any process plant. However, such technologies incur significant capital costs and recurring costs in terms of energy consumption. With the growth in industries in different sectors, such as chemicals, pharmaceuticals, textile, dyes and dye intermediates, dairy, food, and pulp, it is of paramount importance for the government and environmental regulating authorities to impose zero-liquid-discharge as the norm for the certain plants producing a certain amount of effluents. Thus, industries should develop sustainable and cost-effective zero-liquid-discharge technologies. Conventional zero-liquid-discharge technology comprises pretreatment, brine concentrator, and brine crystallizer to solidify all the impurities by thermal evaporation; such plants often have very high-energy consumption per cubic meter of effluent treated. Membrane-based technologies prior to brine concentrators can decrease the load of thermal evaporators by concentrating the effluent to a significant extent. However, the membrane used in zero-liquid-discharge technologies should have certain specific characteristics. They should be able to withstand the high organic load and high total dissolved solids concentration and consequently high pressure. The organic, inorganic, and biofouling on the membrane surface should not be so high so that the membranes can last longer. The present paper reviews different membranes used in zero-liquid-discharge technologies, their characteristics, and their performances and shows the perspectives and scope for future research in the area. Osmotically assisted reverse osmosis and low-salt-rejection reverse osmosis are relatively newer developments in zero and minimal discharge applications. The present paper shows new insight into this domain and provides directions for developing zero-liquid-discharge processes.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study. References for the literature sources have been cited in the manuscript.

Acknowledgments

CSIR-CSMCRI PRIS No. 218/2020. The authors thank the Department of Science and Technology India (Grant No. DST/TDT/WMT/Fouled membrane/2021/01) and the CSIR-CSMCRI library facility for providing access to reputed journals.

References

Abdelhamid, A. 2015. “India uses zero liquid discharge (ZLD) to clean the Ganges River.” Accessed December 1, 2020. http://inspiredeconomist.com/2015/01/14/india-uses-zldganges-river/.
Abdelkareem, M. A., M. E. H. Assad, E. T. Sayed, and B. Soudan. 2018. “Recent progress in the use of renewable energy sources to power water desalination plants.” Desalination 435 (Jun): 97–113. https://doi.org/10.1016/j.desal.2017.11.018.
Ahmed, W., et al. 2020. “Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater.” Sci. Total Environ. 739 (Oct): 139960. https://doi.org/10.1016/j.scitotenv.2020.139960.
Al-Amshawee, S., M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil, and H. A. Hasan. 2020. “Electrodialysis desalination for water and wastewater: A review.” Chem. Eng. J. 380 (Jan): 122231. https://doi.org/10.1016/j.cej.2019.122231.
Alghoul, M. A., P. Poovanaesvaran, K. Sopian, and M. Y. Sulaiman. 2009. “Review of brackish water reverse osmosis (BWRO) system designs.” Renewable Sustainable Energy Rev. 13 (9): 2661–2667. https://doi.org/10.1016/j.rser.2009.03.013.
Al-Karaghouli, A., and L. L. Kazmerski. 2013. “Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes.” Renewable Sustainable Energy Rev. 24 (Aug): 343–356. https://doi.org/10.1016/j.rser.2012.12.064.
Alkhudhiri, A., N. Darwish, and N. Hilal. 2012. “Membrane distillation: A comprehensive review.” Desalination 287 (Feb): 2–18. https://doi.org/10.1016/j.desal.2011.08.027.
Alklaibi, A. M., and N. Lior. 2015. “Membrane-distillation desalination: Status and potential.” Desalination 171 (2): 111–131. https://doi.org/10.1016/j.desal.2004.03.024.
Al-Obaidani, S., E. Curcio, F. Macedonio, G. Di Profio, H. Ai-Hinai, and E. Drioli. 2008. “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation.” J. Membr. Sci. 323 (1): 85–98. https://doi.org/10.1016/j.memsci.2008.06.006.
Ang, W. L., A. W. Mohammad, D. Johnson, and N. Hilal. 2019. “Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade.” J. Water Process Eng. 31 (Oct): 100886. https://doi.org/10.1016/j.jwpe.2019.100886.
Aquatech. 2015. “Mongolia coal to chemicals project to reuse wastewater using Aquatech’s ZLD.” Accessed December 25, 2020. https://www.waterworld.com/articles/wwi/2015/11/mongolia-coal-to-chemicals-project-to-reuse-wastewater-usingaquatech-s-zld.html.
Asgari, M., M. Sagharichiha, and R. Kouhikamali. 2015. “The simulation of a multistage brine concentration process with vertical falling film evaporation.” Lat. Am. Appl. Res. 45 (3): 173–178.
Atia, A. A., N. Y. Yip, and V. Fthenakis. 2021. “Pathways for minimal and zero liquid discharge with enhanced reverse osmosis technologies: Module-scale modeling and techno-economic assessment.” Desalination 509 (Aug): 115069. https://doi.org/10.1016/j.desal.2021.115069.
Attia, H., M. S. Osman, D. J. Johnson, C. Wright, and N. Hilal. 2017. “Modelling of air gap membrane distillation and its application in heavy metals removal.” Desalination 424 (Dec): 27–36. https://doi.org/10.1016/j.desal.2017.09.027.
Bartholomew, T. V., L. Mey, J. T. Arena, N. S. Siefert, and M. S. Mauter. 2017. “Osmotically assisted reverse osmosis for high salinity brine treatment.” Desalination 421 (Nov): 3–11. https://doi.org/10.1016/j.desal.2017.04.012.
Bartholomew, T. V., N. S. Siefert, and M. S. Mauter. 2018. “Cost optimization of osmotically assisted reverse osmosis.” Environ. Sci. Technol. 52 (20): 11813–11821. https://doi.org/10.1021/acs.est.8b02771.
Bloomberg New Energy Finance. 2013. China’s power utilities in hot water: Executive summary. China: Bloomberg.
Bond, R., B. Batchelor, T. Davis, and B. Klayman. 2011. “Zero liquid discharge desalination of brackish water with an innovative form of electrodialysis: Electrodialysis metathesis.” Florida Water Resour. J. 63 (7): 36–44.
Bond, R., T. Davis, J. DeCarolis, and M. Dummer. 2015. Demonstration of a new electrodialysis technology to reduce the energy required for salinity management: Treatment of RO concentrate with EDM. Sacramento, CA: California Energy Commission, Energy Research and Development Division.
Bond, R., and S. Veerapaneni. 2007. Zero liquid discharge for inland desalination. Denver, CO: American Water Works Association Research Foundation.
Bond, R., and S. Veerapaneni. 2008. “Zeroing in on ZLD technologies for inland desalination.” J. Am. Water Work Assoc. 100 (9): 76–89. https://doi.org/10.1002/j.1551-8833.2008.tb09722.x.
Brackish Water Desalination. 2020. “Veolia Water Technologies for Municipal Applications.” Accessed November 20, 2020. www.veoliawatertechnologies.co.za/water-solutions/desalination/brackish-water-desalination.
Burbano, A., and P. Brandhuber. 2012. Demonstration of membrane zero liquid discharge for drinking water systems: A literature review. Alexandria, VA: Water Environment Research Foundation.
Camacho, L. M., J. A. Fox, and J. O. Ajedegba. 2017. “Optimization of electrodialysis metathesis (EDM) desalination using factorial design methodology.” Desalination 403 (Feb): 136–143. https://doi.org/10.1016/j.desal.2016.07.028.
Cappelle, M., W. S. Walker, and T. A. Davis. 2017. “Improving desalination recovery using zero discharge desalination (ZDD): A process model for evaluating technical feasibility.” Ind. Eng. Chem. Res. 56 (37): 10448–10460. https://doi.org/10.1021/acs.iecr.7b02472.
Changxing Power Plant. 2020. “Changxing Power Plant debuts the world’s first forward osmosis based zero liquid discharge application.” Accessed December 6, 2020. http://www.wateronline.com/doc/changxing-power-plant-debutsthe-world-s-first-forward-osmosisbased-zero-liquid-discharge-application-0001.
Chao, Y. M., and T. M. Liang. 2008. “A feasibility study of industrial wastewater recovery using electrodialysis reversal.” Desalination 221 (1–3): 433–439. https://doi.org/10.1016/j.desal.2007.04.065.
Charisiadis, C., and B. V. Lenntech. 2018. A guide to the basic conceptualization of the ZLD/MLD process design and relative technologies involved. Zuid-Holland, Netherlands: Lenntech B.V.
Chen, X., C. Boo, and N. Y. Yip. 2020. “Transport and structural properties of osmotic membranes in high-salinity desalination using cascading osmotically mediated reverse osmosis.” Desalination 479 (Apr): 114335. https://doi.org/10.1016/j.desal.2020.114335.
Chen, X., and N. Y. Yip. 2018. “Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: Energy and operating pressure analysis.” Environ. Sci. Technol. 52 (4): 2242–2250. https://doi.org/10.1021/acs.est.7b05774.
Cheremisinoff, P. N. 2018. Handbook of water and wastewater treatment technology. Boca Raton, FL: Routledge.
Creusen, R., J. van Medevoort, M. Roelands, A. V. van Duivenbode, J. H. Hanemaaijer, and R. van Leerdam. 2013. “Integrated membrane distillation-crystallization: Process design and cost estimations for seawater treatment and fluxes of single salt solutions.” Desalination 323 (Aug): 8–16. https://doi.org/10.1016/j.desal.2013.02.013.
Cushnie, G. C., and D. Brown. 2002. ETV report: Evaluation of hydrometrics, inc., high efficiency reverse osmosis (HERO™) industrial wastewater treatment system. Rep. No. EPA/600/R-02/004. Cincinnati: EPA.
Davenport, D. M., A. Deshmukh, J. R. Werber, and M. Elimelech. 2018. “High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, design considerations, and research needs.” Environ. Sci. Technol. Lett. 5 (8): 467–475. https://doi.org/10.1021/acs.estlett.8b00274.
Deshmukh, A., C. Boo, V. Karanikola, S. Lin, A. P. Straub, T. Tong, D. M. Warsinger, and M. Elimelech. 2018. “Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges.” Energy Environ. Sci. 11 (5): 1177–1196. https://doi.org/10.1039/C8EE00291F.
Dow, N., J. V. García, L. Niadoo, N. Milne, J. Zhang, S. Gray, and M. Duke. 2017. “Demonstration of membrane distillation on textile waste water: Assessment of long-term performance, membrane cleaning and waste heat integration.” Environ. Sci. Water Res. Technol. 3 (3): 433–449. https://doi.org/10.1039/C6EW00290K.
Dow, N., S. Gray, J. Zhang, E. Ostarcevic, A. Liubinas, P. Atherton, G. Roeszler, A. Gibbs, and M. Duke. 2016. “Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment.” Desalination 391 (Aug): 30–42. https://doi.org/10.1016/j.desal.2016.01.023.
Draper, K. 2016. “Waste water treatment and biochar.” Accessed March 20, 2020. https://www.biochar-journal.org/en/ct/81.
Drioli, E., A. Brunetti, G. Di Profio, and G. Barbieri. 2012. “Process intensification strategies and membrane engineering.” Green Chem. 14 (6): 1561–1572. https://doi.org/10.1039/c2gc16668b.
DTRO (Disc Tube Reverse Osmosis). 2020. “Disc Tube Reverse Osmosis (DTRO), Pall’s water.” Accessed November 20, 2020. https://www.pallwater.com/en/products/membranes/disc-tube-reverse-osmosis.html#parsys-content_strip.
Durham, B., and M. Mierzejewski. 2003. “Water reuse and zero liquid discharge: A sustainable water resource solution.” Water Sci. Technol. Water Supply 3 (4): 97–103. https://doi.org/10.2166/ws.2003.0050.
El-Abbassi, A., A. Hafidi, M. C. García-Payo, and M. Khayet. 2009. “Concentration of olive mill wastewater by membrane distillation for polyphenols recovery.” Desalination 245 (1–3): 670–674. https://doi.org/10.1016/j.desal.2009.02.035.
Elimelech, M., and W. A. Phillip. 2011. “The future of seawater desalination: Energy, technology, and the environment.” Science 333 (6043): 712–717. https://doi.org/10.1126/science.1200488.
Elsaid, K., N. Bensalah, and A. Abdel-wahab. 2012. “Inland desalination: Potentials and challenges.” Adv. Chem. Eng. 10 (3): 2068. https://doi.org/10.5772/33134.
Elsaid, K., M. Kamil, E. T. Sayed, M. A. Abdelkareem, T. Wilberforce, and A. Olabi. 2020a. “Environmental impact of desalination technologies: A review.” Sci. Total Environ. 748 (Dec): 141528. https://doi.org/10.1016/j.scitotenv.2020.141528.
Elsaid, K., E. T. Sayed, B. A. Yousef, M. K. H. Rabaia, M. A. Abdelkareem, and A. G. Olabi. 2020b. “Recent progress on the utilization of waste heat for desalination: A review.” Energy Convers. Manage. 221 (Oct): 113105. https://doi.org/10.1016/j.enconman.2020.113105.
Environment (Protection)—Amendment Rules. 2015. “Government of India, Ministry of Environment, Forest & Climate Change, Notification.” Accessed November 14, 2020. http://moef.gov.in/wp-content/uploads/2017/08/CETP_Gazette.pdf.
Fu, J., N. Hu, Z. Yang, and L. Wang. 2018. “Experimental study on zero liquid discharge (ZLD) of FGD wastewater from a coal-fired power plant by flue gas exhausted heat.” J. Water Process Eng. 26 (Dec): 100–107. https://doi.org/10.1016/j.jwpe.2018.10.005.
García-Pacheco, R., J. Landaburu-Aguirre, S. Molina, L. Rodríguez-Sáez, S. B. Teli, and E. García-Calvo. 2015. “Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance.” J. Membr. Sci. 495 (Dec): 305–315. https://doi.org/10.1016/j.memsci.2015.08.025.
García-Triñanes, P., M. A. Chairopoulou, and L. C. Campos. 2021. “Investigating reverse osmosis membrane fouling and scaling by membrane autopsy of a bench scale device.” Environ. Technol. 1–14. https://doi.org/10.1080/09593330.2021.1918262.
Gary, A., G. Noreddine, Z. Li, L. Francis, R. V. Linares, T. Missimer, and S. Lattemann. 2017. “Membrane-based seawater desalination: Present and future prospects.” Desalination 401 (Jan): 16–21. https://doi.org/10.1016/j.desal.2016.10.002.
Gholizadeh, M. H., A. M. Melesse, and L. Reddi. 2016. “A comprehensive review on water quality parameters estimation using remote sensing techniques.” Sensors 16 (8): 1298. https://doi.org/10.3390/s16081298.
Global Water Intelligence. 2020. “Water desalination report.” Accessed November 14, 2020. www.desalination.com/wdr.
Goebel, P., D. Olson, D. M. Polizzotti, and A. R. Khwaja. 2011. Spiral wound membrane element and treatment of SAGD produced water or other high temperature alkaline fluids. Boston: Gen Electric (US).
GoI. 2020. “Guidelines on techno-economic feasibility of implementation of zero liquid discharge (ZLD) for water polluting industries.” Accessed December 21, 2020. http://www.indiaenvironmentportal.org.in/content/405506/guidelines-on-techno-economic-feasibility-of-implementation-of-zero-liquid-discharge-zld-for-water-polluting-industries/.
Grant, S. B., et al. 2012. “Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability.” Science 337 (6095): 681–686. https://doi.org/10.1126/science.1216852.
Gronwall, J., and A. C. Jonsson. 2017. “Regulating effluents from India’s textile sector: New commands and compliance monitoring for zero liquid discharge.” Law Env’t Dev. J. 13 (1): 13.
GWI (Global Water Intelligence). 2009. “From zero to hero: The rise of ZLD.” Accessed December 10, 2020. https://www.globalwaterintel.com/global-water-intelligence-magazine/10/12/market-insight/from-zero-to-hero-the-rise-of-zld.
Heins, W., and K. Schooley. 2004. “Achieving zero liquid discharge in SAGD heavy oil recovery.” J. Can. Pet. Technol. 43 (8). https://doi.org/10.2118/04-08-01.
Hilton, I. 2012. China’s green revolution energy, environment and the 12th five-year plan contents. China: Chinadialouge.
Hsu, S. T., K. T. Cheng, and J. S. Chiou. 2020. “Seawater desalination by direct contact membrane distillation.” Desalination 143 (3): 279–287. https://doi.org/10.1016/S0011-9164(02)00266-7.
Ji, X., E. Curcio, S. Al Obaidani, G. Di Profio, E. Fontananova, and E. Drioli. 2010. “Membrane distillation-crystallization of seawater reverse osmosis brines.” Sep. Purif. Technol. 71 (1): 76–82. https://doi.org/10.1016/j.seppur.2009.11.004.
Jiang, G., H. Li, M. Xu, and H. Ruan. 2021. “Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry.” J. Water Process Eng. 40 (Apr): 101968. https://doi.org/10.1016/j.jwpe.2021.101968.
Jining, C. 2018. Market profile: China’s industrial water market fighting the war on water pollution. China: China Water Risk.
Jones, E., M. Qadir, M. T. van Vliet, V. Smakhtin, and S. M. Kang. 2019. “The state of desalination and brine production: A global outlook.” Sci. Total Environ. 657 (Mar): 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076.
Kavaiya, A. R., and H. D. Raval. 2019. “Fouling resistant membrane tailored by polyethylene glycol in oxidative environment for desalination.” Membr. Water Treat. 10 (5): 381–385. https://doi.org/10.12989/mwt.2019.10.5.381.
Kavaiya, A. R., and H. D. Raval. 2021. “Highly selective and antifouling reverse osmosis membrane by crosslinkers induced surface modification.” Environ. Technol. 43 (14): 1–12. https://doi.org/10.1080/09593330.2020.1869316.
Khayet, M., A. Velázquez, and J. I. Mengual. 2004. “Direct contact membrane distillation of humic acid solutions.” J. Membr. Sci. 240 (1–2): 123–128. https://doi.org/10.1016/j.memsci.2004.04.018.
Kimberly-Clark. 2018. “Economic zero liquid discharge at US chemical facility.” Filtr. Sep. 55 (2): 12. https://doi.org/10.1016/S0015-1882(18)30205-2.
Kimura, S., S.-I. Nakao, and S.-I. Shimatani. 1987. “Transport phenomena in membrane distillation.” J. Membr. Sci. 33 (3): 285–298. https://doi.org/10.1016/S0376-7388(00)80286-0.
Kitajima, M., W. Ahmed, K. Bibby, A. Carducci, C. P. Gerba, K. A. Hamilton, E. Haramoto, and J. B. Rose. 2020. “SARS-CoV-2 in wastewater: State of the knowledge and research needs.” Sci. Total Environ. 739 (Oct): 139076. https://doi.org/10.1016/j.scitotenv.2020.139076.
Korngold, E., L. Aronov, and N. Daltrophe. 2009. “Electrodialysis of brine solutions discharged from an RO plant.” Desalination 242 (1−3): 215–227. https://doi.org/10.1016/j.desal.2008.04.008.
Lawson, K. W., and D. R. Lloyd. 1997. “Membrane distillation.” J. Membr. Sci. 124 (1): 1–25. https://doi.org/10.1016/S0376-7388(96)00236-0.
Leaper, S., A. Abdel-Karim, T. A. Gad-Allah, and P. Gorgojo. 2019. “Air-gap membrane distillation as a one-step process for textile wastewater treatment.” Chem. Eng. J. 360 (Mar): 1330–1340. https://doi.org/10.1016/j.cej.2018.10.209.
Lee, S., Y. Kim, A. S. Kim, and S. Hong. 2016. “Evaluation of membrane-based desalting processes for RO brine treatment.” Desalin. Water Treat. 57 (16): 7432–7439. https://doi.org/10.1080/19443994.2015.1030120.
Li, K., W. Ma, H. Han, C. Xu, Y. Han, D. Wang, W. Ma, and H. Zhu. 2018. “Selective recovery of salt from coal gasification brine by nanofiltration membranes.” J. Environ. Manage. 223 (Oct): 306–313. https://doi.org/10.1016/j.jenvman.2018.06.032.
Lin, J. Y., et al. 2015. “Toward resource recovery from textile wastewater: Dye extraction, water and base/acid regeneration using a hybrid NF-BMED process.” ACS Sustainable Chem. Eng. 3 (9): 1993–2001. https://doi.org/10.1021/acssuschemeng.5b00234.
Liu, E., L. Y. Lee, S. L. Ong, and H. Y. Ng. 2020. “Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge—Challenges and optimization.” Water Res. 183 (Sep): 116059. https://doi.org/10.1016/j.watres.2020.116059.
Loganathan, K., P. Chelme-Ayala, and M. G. El-Din. 2015. “Treatment of basal water using a hybrid electrodialysis reversal-reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge.” Desalination 363 (May): 92–98. https://doi.org/10.1016/j.desal.2015.01.020.
Loganathan, K., P. Chelme-Ayala, and M. G. El-Din. 2016. “Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.” J. Environ. Manage. 165 (Jan): 213–223. https://doi.org/10.1016/j.jenvman.2015.09.019.
Long, X., Q. Zhu, X. Y. Wang, and J. H. Shi. 2014. “Application of high-efficiency reverse osmosis technology in reclaimed water treatment in power plants.” Adv. Mat. Res. 989–994 (2014): 108–114. https://doi.org/10.4028/www.scientific.net/AMR.989-994.108.
Lu, K. J., Z. L. Cheng, J. Chang, L. Luo, and T. S. Chung. 2019. “Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies.” Desalination 458 (May): 66–75. https://doi.org/10.1016/j.desal.2019.02.001.
Mark Bornhoft, P. T. 2018. “Considerations for implementing a zero liquid discharge program 2018.” Accessed December 5, 2020. https://www.watertechonline.com/implementingzero-liquid-discharge/.
Martinetti, C. R., A. E. Childress, and T. Y. Cath. 2009. “High recovery of concentrated RO brines using forward osmosis and membrane distillation.” J. Membr. Sci. 331 (1–2): 31–39. https://doi.org/10.1016/j.memsci.2009.01.003.
McGinnis, R. L., N. T. Hancock, M. S. Nowosielski-Slepowron, and G. D. McGurgan. 2013. “Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines.” Desalination 312 (Mar): 67–74. https://doi.org/10.1016/j.desal.2012.11.032.
McMordie Stoughton, K., X. Duan, and E. M. Wendel. 2013. Reverse osmosis optimization. Richland, WA: Pacific Northwest National Lab.
Medema, G., L. Heijnen, G. Elsinga, R. Italiaander, and A. Brouwer. 2020. “Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands.” Environ. Sci. Technol. Lett. 7 (7): 511–516. https://doi.org/10.1021/acs.estlett.0c00357.
Mehta, B. B., R. N. Joshi, and H. D. Raval. 2018. “A novel ultra-low energy reverse osmosis membrane modified by chitosan with glutaraldehyde crosslinking.” J. Appl. Polym. Sci. 135 (10): 45971. https://doi.org/10.1002/app.45971.
Meindersma, G. W., C. M. Guijt, and A. B. de Haan. 2006. “Desalination and water recycling by air gap membrane distillation.” Desalination 187 (1−3): 291–301. https://doi.org/10.1016/j.desal.2005.04.088.
Mickley, M. 2008. Survey of high-recovery and zero liquid discharge technologies for water utilities. Alexandria, VA: WateReuse Foundation.
Mo, J., Q. Yang, N. Zhang, W. Zhang, Y. Zheng, and Z. Zhang. 2018. “A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment.” J. Environ. Manage. 227 (Dec): 395–405. https://doi.org/10.1016/j.jenvman.2018.08.069.
Mohammadtabar, F., B. Khorshidi, A. Hayatbakhsh, and M. Sadrzadeh. 2019. “Integrated coagulation-membrane processes with zero liquid discharge (ZLD) configuration for the treatment of oil sands produced water.” Water 11 (7): 1348. https://doi.org/10.3390/w11071348.
Novelis’s New ReFlex Reverse Osmosis System. 2016. “Desalitech wins zero liquid discharge (ZLD) deal in China.” Accessed December 21, 2020. https://www.desalitech.com/desalitech-wins-zero-liquid-deal-in-china/.
Oren, Y., E. Korngold, N. Daltrophe, R. Messalem, Y. Volkman, L. Aronov, M. Weismann, N. Bouriakov, P. Glueckstern, and J. Gilron. 2010. “Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach.” Desalination 261 (3): 321–330. https://doi.org/10.1016/j.desal.2010.06.010.
Panagopoulos, A. 2020. “Techno-economic evaluation of a solar multi-effect distillation/thermal vapor compression hybrid system for brine treatment and salt recovery.” Chem. Eng. Process.: Process Intensif. 152 (Jun): 107934. https://doi.org/10.1016/j.cep.2020.107934.
Panagopoulos, A. 2021a. “Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach: A techno-economic evaluation.” J. Environ. Chem. Eng. 9 (4): 105338. https://doi.org/10.1016/j.jece.2021.105338.
Panagopoulos, A. 2021b. “Energetic, economic and environmental assessment of zero liquid discharge (ZLD) brackish water and seawater desalination systems.” Energy Convers. Manage. 235 (May): 113957. https://doi.org/10.1016/j.enconman.2021.113957.
Panagopoulos, A. 2021c. “Techno-economic assessment of minimal liquid discharge (MLD) treatment systems for saline wastewater (brine) management and treatment.” Process Saf. Environ. 146 (Feb): 656–669. https://doi.org/10.1016/j.psep.2020.12.007.
Panagopoulos, A., and K. J. Haralambous. 2020a. “Environmental impacts of desalination and brine treatment: Challenges and mitigation measures.” Mar. Pollut. Bull. 161 (Part B): 111773. https://doi.org/10.1016/j.marpolbul.2020.111773.
Panagopoulos, A., and K. J. Haralambous. 2020b. “Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery: Analysis, challenges and prospects.” J. Environ. Chem. Eng. 8 (5): 104418. https://doi.org/10.1016/j.jece.2020.104418.
Peters, C. D., and N. P. Hankins. 2019. “Osmotically assisted reverse osmosis (OARO): Five approaches to dewatering saline brines using pressure-driven membrane processes.” Desalination 458 (May): 1–13. https://doi.org/10.1016/j.desal.2019.01.025.
Peters, C. D., and N. P. Hankins. 2020. “The synergy between osmotically assisted reverse osmosis (OARO) and the use of thermo-responsive draw solutions for energy efficient, zero-liquid discharge desalination.” Desalination 493 (Nov): 114630. https://doi.org/10.1016/j.desal.2020.114630.
Qiu, T., and P. A. Davies. 2012. “Comparison of configurations for high-recovery inland desalination systems.” Water 4 (3): 690–706. https://doi.org/10.3390/w4030690.
Quesada, G. C., L. Breitenmoser, T. Hooijmans, Anshuman, N. B Dkhar, and P. Campling. 2020. “Mainstreaming governance on waste water treatment and water re-use: Learnings from India and the European Union.” Accessed November 14, 2020. https://pavitra-ganga.eu/sites/pavitraganga/files/Policy%20Brief_Mainstreaming%20Governance_LB_PC.pdf.
Quist-Jensen, C., F. Macedonio, and E. Drioli. 2016. “Integrated membrane desalination systems with membrane crystallization units for resource recovery: A new approach for mining from the sea.” Crystals 6 (4): 36. https://doi.org/10.3390/cryst6040036.
Qureshi, B. A., and S. M. Zubair. 2016. “Exergy and sensitivity analysis of electrodialysis reversal desalination plants.” Desalination 394 (Sep): 195–203. https://doi.org/10.1016/j.desal.2016.05.015.
Rajkumar, R., S. Sathish, and P. Senthilkumar. 2018. “Studies on enhancing the efficiency of ZLD plant for tannery effluent by implementing low-cost ambient air evaporator system.” Rasayan J. Chem. 11 (1): 13–17. https://doi.org/10.7324/RJC.2018.1111893.
Ramlow, H., R. A. F. Machado, A. C. K. Bierhalz, and C. Marangoni. 2020. “Dye synthetic solution treatment by direct contact membrane distillation using commercial membranes.” Environ. Technol. 41 (17): 2253–2265. https://doi.org/10.1080/09593330.2018.1561758.
Rao, U., R. Posmanik, L. E. Hatch, J. W. Tester, S. L. Walker, K. C. Barsanti, and D. Jassby. 2018. “Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste.” Bioresour. Technol. 267 (Nov): 408–415. https://doi.org/10.1016/j.biortech.2018.07.064.
Raval, H. D., V. R. Chauhan, A. H. Raval, and S. Mishra. 2012. “Rejuvenation of discarded RO membrane for new applications.” Desalin. Water Treat. 48 (1–3): 349–359. https://doi.org/10.1080/19443994.2012.704727.
Raval, H. D., and P. Koradiya. 2016. “Direct fertigation with brackish water by a forward osmosis system converting domestic reverse osmosis module into forward osmosis membrane element.” Desalin. Water Treat. 57 (34): 15740–15747. https://doi.org/10.1080/19443994.2015.1075432.
Raval, H. D., J. J. Trivedi, S. V. Joshi, and C. V. Devmurari. 2010. “Flux enhancement of thin film composite RO membrane by controlled chlorine treatment.” Desalination 250 (3): 945–949. https://doi.org/10.1016/j.desal.2009.05.005.
Ravi, J., M. H. D. Othman, T. Matsuura, M. R. I. Bilad, T. H. El-badawy, F. Aziz, and J. Jaafar. 2020. “Polymeric membrane for desalination using membrane distillation: A review.” Desalination 490 (Sep): 114530. https://doi.org/10.1016/j.desal.2020.114530.
Reportlinker. 2018. “Growth opportunities in the global zero liquid discharge (ZLD) systems market, forecast to 2024.” Accessed November 22, 2020. https://www.reportlinker.com/p05580336/Growth-Opportunities-in-the-Global-Zero-Liquid-Discharge-ZLDSystems-Market-Forecast-to.html.
Roberts, C. 2015. “Effluent limitations guidelines and standards for the steam electric power generating point source category.” Accessed November 3, 2015. https://www.govinfo.gov/content/pkg/FR-2015-11-03/pdf/2015-25663.pdf.
Ronquim, F. M., H. M. Sakamoto, J. C. Mierzwa, L. Kulay, and M. M. Seckler. 2020. “Eco-efficiency analysis of desalination by precipitation integrated with reverse osmosis for zero liquid discharge in oil refineries.” J. Cleaner Prod. 250 (Mar): 119547. https://doi.org/10.1016/j.jclepro.2019.119547.
Ruiz-García, A., and I. Nuez. 2020. “Performance assessment of SWRO spiral-wound membrane modules with different feed spacer dimensions.” Processes 8 (6): 692. https://doi.org/10.3390/pr8060692.
Sagharichiha, M., A. Jafarian, M. Asgari, and R. Kouhikamali. 2014. “Simulation of a forward feed multiple effect desalination plant with vertical tube evaporators.” Chem. Eng. Process. 75 (Jan): 110–118. https://doi.org/10.1016/j.cep.2013.11.008.
Saltworks. 2020. “Applying ultra high-pressure Reverse Osmosis in brine management.” Accessed November 20, 2020. www.saltworkstech.com.
Salvador Cob, S., C. Yeme, B. Hofs, E. R. Cornelissen, D. Vries, F. E. Genceli Güner, and G. J. Witkamp. 2015. “Towards zero liquid discharge in the presence of silica: Stable 98% recovery in nanofiltration and reverse osmosis.” Sep. Purif. Technol. 140 (Jan): 23–31. https://doi.org/10.1016/j.seppur.2014.11.009.
Sarkar A. 2011. “Zero Liquid Discharge, Membrane Hybrid Excels in China.” Accessed December 3, 2020. https://www.waterworld.com/articles/wwi/print/volume-26/issue-4/editorial-focus/sludge-processing/zero-liquid-discharge-membrane.html.
Schantz, A. B., B. Xiong, E. Dees, D. R. Moore, X. Yang, and M. Kumar. 2018. “Emerging investigators series: Prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams.” Environ. Sci. Water Res. Technol. 4 (7): 894–908. https://doi.org/10.1039/C8EW00137E.
Schwantes, R., K. Chavan, D. Winter, C. Felsmann, and J. Pfafferott. 2018. “Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application.” Desalination 428 (Feb): 50–68. https://doi.org/10.1016/j.desal.2017.11.026.
Schwarzenbach, R. P., T. Egli, T. B. Hofstetter, U. Von Gunten, and B. Wehrli. 2010. “Global water pollution and human health.” Ann. Rev. 35 (1): 109–136. https://doi.org/10.1146/annurev-environ-100809-125342.
Semblante, G. U., J. Z. Lee, L. Y. Lee, S. L. Ong, and H. Y. Ng. 2018. “Brine pre-treatment technologies for zero liquid discharge systems.” Desalination 441 (Sep): 96–111. https://doi.org/10.1016/j.desal.2018.04.006.
Seunghwan, K., K. Sewoon, Z. Ahmed, D. K. Cha, and J. Cho. 2018. “Flux model for the membrane distillation process to treat wastewater: Effect of solids concentration.” J. Membr. Sci. 566 (Nov): 396–405. https://doi.org/10.1016/j.memsci.2018.09.018.
Shaffer, D. L., L. H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N. Y. Yip, and M. Elimelech. 2013. “Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions.” Environ. Sci. Technol. 47 (17): 9569–9583. https://doi.org/10.1021/es401966e.
Shaffer, D. L., J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech. 2015. “Forward osmosis: Where are we now?” Desalination 356 (Jan): 271–284. https://doi.org/10.1016/j.desal.2014.10.031.
Singh, Z., and S. Bhalla. 2017. “Towards zero liquid discharge.” Adv. Res. Text. Eng. 2 (1): 1–4.
Song, Y. 2020. “Environmental impacts of zero liquid discharge technologies, 2020.” Ph.D. dissertation. School for Environment and Sustainability, Univ. of Michigan.
Stanley, T. 2015. “Coal-to-chemicals an emerging opportunity in China 2015.” Accessed December 14, 2020. http://usedtouseful.com/post/108284189605/coal-to-chemicals-anemerging-opportunity-in-china.
State Council of the People’s Republic of China. n.d. “China announces action plan to tackle water pollution [WWW Document].” Accessed December 23, 2020. http://english.gov.cn/policies/latest_releases/2015/04/16/content_281475090170164.htm.
Stover, R., A. O. Fernandez, and J. Galtes. 2009. “Permeate recovery rate optimization at the Alicante Spain SWRO Plant.” In Proc., Int. Desalination Association World Congress. Danvers, MA: International Desalination Association.
Subramani, A., and J. G. Jacangelo. 2014. “Treatment technologies for reverse osmosis concentrate volume minimization: A review.” Sep. Purif. Rev. 122 (Feb): 472–489. https://doi.org/10.1016/j.seppur.2013.12.004.
SUN Rising Membrane Technologies. 2020. “Disc Tube RO/NF Membrane / DTRO/DTNF.” Accessed November 20, 2020. https://www.risingsunmem.com/en/service-type_80.html.
Tang, W., and H. Y. Ng. 2008. “Germany concentration of brine by forward osmosis: Performance and influence of membrane structure.” Desalination 224 (1–3): 143–153. https://doi.org/10.1016/j.desal.2007.04.085.
Termpiyakul, P., R. Jiraratananon, and S. Srisurichan. 2005. “Heat and mass transfer characteristics of a direct contact membrane distillation process for desalination.” Desalination 177 (1–3): 133–141. https://doi.org/10.1016/j.desal.2004.11.019.
T. H. Group. 2016. “World first for zero liquid discharge.” Filter. Sep. 53 (1): 20–22. https://doi.org/10.1016/S0015-1882(16)30038-6.
Tong, T., and M. Elimelech. 2016. “The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions.” Environ. Sci. Technol. 50 (13): 6846–6855. https://doi.org/10.1021/acs.est.6b01000.
Tong, T., A. F. Wallace, S. Zhao, and Z. Wang. 2019. “Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes.” J. Membr. Sci. 579 (Jun): 52–69. https://doi.org/10.1016/j.memsci.2019.02.049.
Tsai, J. H., F. Macedonio, E. Drioli, L. Giorno, C. Y. Chou, F. C. Hu, C. L. Li, C. J. Chuang, and K. L. Tung. 2017. “Membrane-based zero liquid discharge: Myth or reality?” J. Taiwan Inst. Chem. Eng. 80 (Nov): 192–202. https://doi.org/10.1016/j.jtice.2017.06.050.
Tufa, R. A., E. Curcio, E. Brauns, W. van Baak, E. Fontananova, and G. Di Profio. 2015. “Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination.” J. Membr. Sci. 496 (Dec): 32533. https://doi.org/10.1016/j.memsci.2015.09.008.
Tun, C. M., and A. M. Groth. 2011. “Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent.” Desalination 283 (Dec): 187–192. https://doi.org/10.1016/j.desal.2011.03.054.
Turek, M. 2003. “Cost effective electrodialytic seawater desalination.” Desalination 153 (1–3): 371–376. https://doi.org/10.1016/S0011-9164(02)01130-X.
Turek, M. 2004. “Electrodialytic desalination and concentration of coalmine brine.” Desalination 162 (1−3): 355–359. https://doi.org/10.1016/S0011-9164(04)00069-4.
Vergili, I., Y. Kaya, U. Sen, Z. B. Gonder, and C. Aydiner. 2012. “Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach.” Resour. Conserv. Recycl. 58 (Jan): 25–35. https://doi.org/10.1016/j.resconrec.2011.10.005.
Vishnu, G., S. Palanisamy, and K. Joseph. 2008. “Assessment of field scale zero liquid discharge treatment systems for recovery of water and salt from textile effluents.” J. Cleaner Prod. 16 (10): 1081–1089. https://doi.org/10.1016/j.jclepro.2007.06.005.
Vörösmarty, C. J., et al. 2010. “Global threats to human water security and river biodiversity.” Nature 467 (7315): 555–561. https://doi.org/10.1038/nature09440.
Vyas, J. K. 2016. For challenges against implementation of ZLD in textile processing industries and clusters in India. India: Centre for Environment Education.
Wang, L. K., J. P. Chen, Y. T. Hung, and N. K. Shammas. 2008. Vol. 13 of Membrane and desalination technologies. New York: Springer.
Wang, M., H. B. Xing, Y. X. Jia, and Q. C. Ren. 2015. “A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis based technology.” J. Hazard. Mater. 300 (Dec): 322–328. https://doi.org/10.1016/j.jhazmat.2015.05.042.
Wang, Z., A. Deshmukh, Y. Du, and M. Elimelech. 2020. “Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes.” Water Res. 170 (Mar): 115317. https://doi.org/10.1016/j.watres.2019.115317.
Xevgenos, D., K. Moustakas, D. Malamis, and M. Loizidou. 2016. “An overview on desalination & sustainability: Renewable energy-driven desalination and brine management.” Desalin. Water Treat. 57 (5): 2304–2314. https://doi.org/10.1080/19443994.2014.984927.
Xu, P., T. Y. Cath, A. P. Robertson, M. Reinhard, J. O. Leckie, and J. E. Drewes. 2013. “Critical review of desalination concentrate management, treatment and beneficial use.” Environ. Eng. Sci. 30 (8): 502–514. https://doi.org/10.1089/ees.2012.0348.
XZERO. 2019. Everything to zero.” Accessed March 20, 2021. https://www.xzero.se/en/the-xzero-system/.
Yaqub, M., and W. Lee. 2019. “Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review.” Sci. Total Environ. 681 (Sep): 551–563. https://doi.org/10.1016/j.scitotenv.2019.05.062.
Zhang, Y., K. Ghyselbrecht, B. Meesschaert, L. Pinoy, and B. Van der Bruggen. 2011. “Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation.” J. Membr. Sci. 378 (1–2): 101–110. https://doi.org/10.1016/j.memsci.2010.10.036.
Zhangxin, W., D. Akshay, D. Yuhao, and E. Menachem. 2019. “Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes.” Water Res. 170 (Mar): 115317. https://doi.org/10.1016/j.watres.2019.115317.
Zhao, D., L. Y. Lee, S. L. Ong, P. Chowdhury, K. B. Siah, and H. Y. Ng. 2019. “Electrodialysis reversal for industrial reverse osmosis brine treatment.” Sep. Purif. Technol. 213 (Apr): 339–347. https://doi.org/10.1016/j.seppur.2018.12.056.
Zhao, S., L. Zou, C. Y. Tang, and D. Mulcahy. 2012. “Recent developments in forward osmosis: Opportunities and challenges.” J. Membr. Sci. 396 (Apr): 1–21. https://doi.org/10.1016/j.memsci.2011.12.023.
Zolotarev, P. P., V. V. Ugrozov, I. B. Volkina, and V. M. Nikulin. 1994. “Treatment of waste water for removing heavy metals by membrane distillation.” J. Hazard. Mater. 37 (1): 77–82. https://doi.org/10.1016/0304-3894(94)85035-6.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 11November 2022

History

Published online: Aug 30, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 30, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Research Scholar, Gujarat Technological Univ., Ahmedabad, Gujarat 382027, India; Professor, Dept. of Chemical Engineering, Vyavasayi Vidya Pratisthan (VVP) Engineering College, Rajkot, Gujarat 360005, India. Email: [email protected]
Research Scholar, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002, India. ORCID: https://orcid.org/0000-0002-4498-2355. Email: [email protected]
Piyush B. Vanzara [email protected]
Professor, Gujarat Technological Univ., Ahmedabad, Gujarat 382027, India; Professor, Dept. of Chemical Engineering, Vyavasayi Vidya Pratisthan (VVP) Engineering College, Rajkot, Gujarat 360005, India. Email: [email protected]
Principle Scientist, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364 002, India (corresponding author). ORCID: https://orcid.org/0000-0002-8386-727X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Steel Slag and Limestone as a Rock Filter for Eliminating Phosphorus from Domestic Wastewater: A Pilot Study in a Warm Climate, Water, 10.3390/w15040657, 15, 4, (657), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share