State-of-the-Art Reviews
Jul 15, 2022

Overview of Modeling, Applications, and Knowledge Gaps for Integrated Large-Scale PFAS Modeling

Publication: Journal of Environmental Engineering
Volume 148, Issue 9

Abstract

Perfluoroalkyl substances (PFAS) have been observed around the world in air, water, and soil. Recent research and monitoring studies have alluded to the widespread presence of PFAS, but most observed the impact of PFAS as a snapshot in time and space. In an effort to better understand PFAS fate and transport in the environment, computational models have been developed. Here, we synthesized the model applications of PFAS fate and transport via water medium through surface water, vadose zone, groundwater, and streamflow as well as their uptake and accumulation in plants and aquatic organisms. Meanwhile, the water medium is permeable to incoming (sources) and outgoing (sinks) PFAS compounds. Ultimately, knowledge gaps in modeling PFAS for each environmental area were identified. The knowledge gaps highlight the simplicity of the models to date, with most simulating small and isolated systems. Future work opportunities are apparent for both sampling efforts and model development given the knowledge gaps identified.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

This work was supported by the Michigan Department of Natural Resources Contract No. 200000000672. This work was also supported by the US Department of Agriculture-National Institute of Food and Agriculture, Hatch Project 1019654. We would like to thank the Michigan PFAS Action Response Team for providing PFAS observation data. Finally, we would like to express our appreciation to Christian Loveall, Hannah Ferriby, Josué Kpodo, and Alex Raschke for all of their efforts with data analysis and visualization of the results for this work.

References

Abouali, M., A. P. Nejadhashemi, F. Daneshvar, and S. A. Woznicki. 2016. “Two-phase approach to improve stream health modeling.” Ecol. Inf. 34 (Jul): 13–21. https://doi.org/10.1016/j.ecoinf.2016.04.009.
Aherne, G. W., and R. Briggs. 1989. “The relevance of the presence of certain synthetic steroids in the aquatic environment.” J. Pharm. Pharmacol. 41 (10): 735–736. https://doi.org/10.1111/j.2042-7158.1989.tb06355.x.
Ahrens, L., and M. Bundschuh. 2014. “Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review.” Environ. Toxicol. Chem. 33 (9): 1921–1929. https://doi.org/10.1002/etc.2663.
Åkerblom, S., N. Negm, P. Wu, K. Bishop, and L. Ahrens. 2017. “Variation and accumulation patterns of poly- and perfluoroalkyl substances (PFAS) in European perch (Perca fluviatilis) across a gradient of pristine Swedish lakes.” Sci. Total Environ. 599–600 (Dec): 1685–1692. https://doi.org/10.1016/j.scitotenv.2017.05.032.
Alley, W. M. 2009. “Ground water.” In Encyclopedia of inland waters, 684–690. Boston: Academic Press.
Aly, N. A., et al. 2020. “Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident.” Environ. Pollut. 265 (Oct): 115009. https://doi.org/10.1016/j.envpol.2020.115009.
Ambrose, R. B., and T. Wool. 2017. WASP8 stream transport—Model theory and user’s guide. Washington, DC: USEPA.
Anderson, M. P., W. W. Woessner, and R. J. Hunt. 2015. Applied groundwater modeling: Simulation of flow and advective transport. Boston: Academic Press.
Ankley, G. T., et al. 2010. “Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment.” Environ. Toxicol. Chem. 29 (3): 730–741. https://doi.org/10.1002/etc.34.
Ankley, G. T., et al. 2021. “Assessing the ecological risks of per- and polyfluoroalkyl substances: Current state-of-the science and a proposed path forward.” Environ. Toxicol. Chem. 40 (3): 564–605. https://doi.org/10.1002/etc.4869.
Arcadis. 2020. Review of models for evaluating per- and polyfluoroalkyl substances in risidual and biosolids. Amsterdam, Netherlands: Arcadis.
ATSDR (Agency for Toxic Substances and Disease Registry). 2020. “PFAS chemical exposure.” PFAS and Your Health. Accessed August 26, 2021. https://www.atsdr.cdc.gov/pfas/health-effects/exposure.html.
Bedekar, V., E. D. Morway, C. D. Langevin, and M. J. Tonkin. 2016. MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW. Richmond, VA: USGS.
Bedford, C. T. 2003. “Reactions of carboxylic, phosphoric, and sulfonic acids and their derivatives.” In Organic reaction mechanisms 2003. Hoboken, NJ: John Wiley and Sons.
Begnudelli, L., and B. F. Sanders. 2006. “Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying.” J. Hydraul. Eng. 132 (4): 371–384. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371).
Behr, A. C., C. Plinsch, A. Braeuning, and T. Buhrke. 2020. “Activation of human nuclear receptors by perfluoroalkylated substances (PFAS).” Toxicol. Vitro 62 (Feb): 104700. https://doi.org/10.1016/j.tiv.2019.104700.
Boisvert, G., C. Sonne, F. F. Rigét, R. Dietz, and R. J. Letcher. 2019. “Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey.” Environ. Pollut. 252 (Sep): 1335–1343. https://doi.org/10.1016/j.envpol.2019.06.035.
Bolt, G. H. 1976. “Adsorption of anions by soil.” In Developments in soil science, 91–95. Amsterdam, Netherlands: Elsevier.
Borthakur, A., M. Wang, M. He, K. Ascencio, J. Blotevogel, D. T. Adamson, S. Mahendra, and S. K. Mohanty. 2021. “Perfluoroalkyl acids on suspended particles: Significant transport pathways in surface runoff, surface waters, and subsurface soils.” J. Hazard. Mater. 417 (Sep): 126159. https://doi.org/10.1016/j.jhazmat.2021.126159.
Brusseau, M. L., R. H. Anderson, and B. Guo. 2020. “PFAS concentrations in soils: Background levels versus contaminated sites.” Sci. Total Environ. 740 (Oct): 140017. https://doi.org/10.1016/j.scitotenv.2020.140017.
Brusseau, M. L., and J. Chorover. 2019. “Chemical processes affecting contaminant transport and fate.” In Environmental and pollution science, 113–130. Boston: Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00008-2.
Carsel, R. F., L. A. Mulkey, M. N. Lorber, and L. B. Baskin. 1985. “The pesticide root zone model (PRZM): A procedure for evaluating pesticide leaching threats to groundwater.” Ecol. Modell. 30 (1–2): 49–69. https://doi.org/10.1016/0304-3800(85)90036-5.
Charbonnet, J. A., A. E. Rodowa, N. T. Joseph, J. L. Guelfo, J. A. Field, G. D. Jones, C. P. Higgins, D. E. Helbling, and E. F. Houtz. 2021. “Environmental source tracking of per—And polyfluoroalkyl substances within a forensic context: Current and future techniques.” Environ. Sci. Technol. 55 (11): 7237–7245. https://doi.org/10.1021/acs.est.0c08506.
Clara, M., O. Gans, S. Weiss, D. Sanz-Escribano, S. Scharf, and C. Scheffknecht. 2009. “Perfluorinated alkylated substances in the aquatic environment: An Austrian case study.” Water Res. 43 (18): 4760–4768. https://doi.org/10.1016/j.watres.2009.08.004.
Codling, G., H. Yuan, P. D. Jones, J. P. Giesy, and M. Hecker. 2020. “Metals and PFAS in stormwater and surface runoff in a semi-arid Canadian city subject to large variations in temperature among seasons.” Environ. Sci. Pollut. Res. 27 (15): 18232–18241. https://doi.org/10.1007/s11356-020-08070-2.
Conder, J. M., R. A. Hoke, W. De Wolf, M. H. Russell, and R. C. Buck. 2008. “Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds.” Environ. Sci. Technol. 42 (4): 995–1003. https://doi.org/10.1021/es070895g.
Costello, M., and L. S. Lee. 2020. “Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances.” Curr. Pollut. Rep. (Dec): 1–21.
Dauchy, X., V. Boiteux, A. Colin, C. Bach, C. Rosin, and J. F. Munoz. 2019. “Poly- and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area.” Arch. Environ. Contamin. Toxicol. 76 (2): 206–215. https://doi.org/10.1007/s00244-018-0585-z.
Deltares. 2021. Delft3D 3D/2D modelling suite for integral water solutions. Delft, Netherlands: Deltares.
DHI (Danish Institute of Applied Hydraulics). 2017. Vol 2 of Mike SHE. Hørsholm, Denmark: DHI.
Diaz, R. J., and R. Rosenberg. 2008. “Spreading dead zones and consequences for marine ecosystems.” Science 321 (5891): 926–929. https://doi.org/10.1126/science.1156401.
EEA (European Environmental Agency). 2019. Emerging chemical risks in Europe—PFAS’. Copenhagen, Denmark: EEA.
EGLE (Michigan Department of Environment, Great Lakes, and Energy). 2019. Investigation of the occurrence and source(s) of PFAS in the Huron River watershed July 2018–December 2019. Lansing, MI: EGLE.
Engers, A., K. Singha, J. E. McCray, and C. P. Higgins. 2021. “Estimating historical concentrations of per- and polyfluoroalkyl substances with groundwater flow and transport models and a Monte Carlo analysis.” Accessed December 1, 2021. https://hdl.handle.net/11124/176494.
Fisk, A. T., K. A. Hobson, and R. J. Norstrom. 2001. “Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the Northwater Polynya marine food web.” Environ. Sci. Technol. 35 (4): 732–738. https://doi.org/10.1021/es001459w.
Frisbee, S. J., et al. 2009. “The C8 health project: Design, methods, and participants.” Environ. Health Perspect. 117 (12): 1873–1882. https://doi.org/10.1289/ehp.0800379.
Gassmann, M., E. Weidemann, and T. Stahl. 2021. “Combined leaching and plant uptake simulations of PFOA and PFOS under field conditions.” Environ. Sci. Pollut. Res. 28 (2): 2097–2107. https://doi.org/10.1007/s11356-020-10594-6.
GeoStudio. 2021. “Vadose zone hydrology.” Accessed July 26, 2021. http://www.geoslope.com/solutions/vadose-zone-hydrology.
Ghisi, R., T. Vamerali, and S. Manzetti. 2019. “Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review.” Environ. Res. 169 (Feb): 326–341. https://doi.org/10.1016/j.envres.2018.10.023.
Glaser, D., E. Lamoureux, D. Opdyke, S. LaRoe, D. Reidy, and J. Connolly. 2021. “The impact of precursors on aquatic exposure assessment for PFAS: Insights from bioaccumulation modeling.” Integr. Environ. Assess. Manage. 17 (4): 705–715. https://doi.org/10.1002/ieam.4414.
Glibert, P. M., R. Maranger, D. J. Sobota, and L. Bouwman. 2014. “The Haber Bosch–harmful algal bloom (HB-HAB) link.” Environ. Res. Lett. 9 (10): 105001. https://doi.org/10.1088/1748-9326/9/10/105001.
Gomis, M. I., Z. Wang, M. Scheringer, and I. T. Cousins. 2015. “A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.” Sci. Total Environ. 505 (Feb): 981–991. https://doi.org/10.1016/j.scitotenv.2014.10.062.
Goode, D. J., and L. A. Senior. 2020. Groundwater withdrawals and regional flow paths at and near Willow Grove and Warminster, Pennsylvania—Data compilation and preliminary simulations for conditions in 1999, 2010, 2013, 2016, and 2017. Reston, VA: USGS.
Groffen, T., B. Nkuba, V. Wepener, and L. Bervoets. 2021. “Risks posed by per- and polyfluoroalkyl substances (PFAS) on the African continent, emphasizing aquatic ecosystems.” Integr. Environ. Assess. Manage. 17 (4): 726–732. https://doi.org/10.1002/ieam.4404.
Guelfo, J. L., and D. T. Adamson. 2018. “Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water.” Environ. Pollut. 236 (May): 505–513. https://doi.org/10.1016/j.envpol.2018.01.066.
Guelfo, J. L., A. Wunsch, J. McCray, J. F. Stults, and C. P. Higgins. 2020. “Subsurface transport potential of perfluoroalkyl acids (PFAAs): Column experiments and modeling.” J. Contam. Hydrol. 233 (Aug): 103661. https://doi.org/10.1016/j.jconhyd.2020.103661.
Guo, B., J. Zeng, and M. L. Brusseau. 2020. “A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone.” Water Resour. Res. 56 (2): e2019WR026667. https://doi.org/10.1029/2019WR026667.
Harbaugh, A. W. 2005. “MODFLOW-2005, the U.S. geological survey modular ground-water model-the ground-water flow process.” In Vol. 6 of Modeling techniques, Section A. Ground water. Reston, VA: USGS.
Haukås, M., U. Berger, H. Hop, B. Gulliksen, and G. W. Gabrielsen. 2007. “Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web.” Environ. Pollut. 148 (1): 360–371. https://doi.org/10.1016/j.envpol.2006.09.021.
Higgins, C. P., and R. G. Luthy. 2006. “Sorption of perfluorinated surfactants on sediments.” Environ. Sci. Technol. 40 (23): 7251–7256. https://doi.org/10.1021/es061000n.
Hodgkins, L. M., R. P. Mulligan, J. M. McCallum, and K. P. Weber. 2019. “Modelling the transport of shipborne per- and polyfluoroalkyl substances (PFAS) in the coastal environment.” Sci. Total Environ. 658 (Mar): 602–613. https://doi.org/10.1016/j.scitotenv.2018.12.230.
Høisæter, Å., A. Pfaff, and G. D. Breedveld. 2019. “Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions.” J. Contam. Hydrol. 222 (Apr): 112–122. https://doi.org/10.1016/j.jconhyd.2019.02.010.
Hopmans, J. W., and M. T. van Genuchten. 2005. “Vadose zone | Hydrologic processes.” In Vol. 4 of Encyclopedia of soils in the environment, 209–216. Boston: Academic Press. https://doi.org/10.1016/B0-12-348530-4/00434-3.
Houde, M., G. Czub, J. M. Small, S. Backus, X. Wang, M. Alaee, and D. C. G. Muir. 2008. “Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a lake Ontario food web.” Environ. Sci. Technol. 42 (24): 9397–9403. https://doi.org/10.1021/es800906r.
Hu, X. C., et al. 2016. “Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants.” Environ. Sci. Technol. Lett. 3 (10): 344–350. https://doi.org/10.1021/acs.estlett.6b00260.
Hu, X. C., B. Ge, B. J. Ruyle, J. Sun, and E. M. Sunderland. 2021. “A statistical approach for identifying private wells susceptible to perfluoroalkyl substances (PFAS) contamination.” Environ. Sci. Technol. Lett. 8 (7): 596–602. https://doi.org/10.1021/acs.estlett.1c00264.
Huang, D., R. Xiao, L. Du, G. Zhang, L. S. Yin, R. Deng, and G. Wang. 2021. “Phytoremediation of poly- and perfluoroalkyl substances: A review on aquatic plants, influencing factors, and phytotoxicity.” J. Hazard. Mater. 418 (Sep): 126314. https://doi.org/10.1016/j.jhazmat.2021.126314.
IPEN (International Pollutants Elimination Network). 2019. PFAS pollution across the Middle East and Asia. Stockholm, Sweden: IPEN.
ITRC (Interstate Technology Regulatory Council). 2018. Aqueous film-forming foam (AFFF). Washington, DC: ITRC.
ITRC (Interstate Technology Regulatory Council). 2020a. Environmental fate and transport processes. Washington, DC: ITRC.
ITRC (Interstate Technology Regulatory Council). 2020b. PFAS releases to the environment. Washington, DC: ITRC.
ITRC (Interstate Technology Regulatory Council). 2020c. Physical and chemical properties. Washington, DC: ITRC.
Jarvis, N., and M. Larsson. 2001. “Modeling macropore flow in soils: Field validation and use for management purposes.” In Conceptual models of flow and transport in the fractured vadose zone, 189–210. Washington, DC: National Academies Press. https://doi.org/10.17226/10102.
Kidd, K. A., L. P. Burkhard, M. Babut, K. Borgå, D. C. G. Muir, O. Perceval, H. Ruedel, K. Woodburn, and M. R. Embry. 2019. “Practical advice for selecting or determining trophic magnification factors for application under the European Union water framework directive.” Integr. Environ. Assess. Manage. 15 (2): 266–277. https://doi.org/10.1002/ieam.4102.
Klein, M., et al. 1997. “Validation of the pesticide leaching model PELMO using lysimeter studies performed for registration.” Chemosphere 35 (11): 2563–2587. https://doi.org/10.1016/S0045-6535(97)00325-1.
Kotthoff, M., J. Müller, H. Jürling, M. Schlummer, and D. Fiedler. 2015. “Perfluoroalkyl and polyfluoroalkyl substances in consumer products.” Environ. Sci. Pollut. Res. 22 (19): 14546–14559. https://doi.org/10.1007/s11356-015-4202-7.
Lan, Z., M. Zhou, Y. Yao, and H. Sun. 2018. “Plant uptake and translocation of perfluoroalkyl acids in a wheat–soil system.” Environ. Sci. Pollut. Res. 25 (31): 30907–30916. https://doi.org/10.1007/s11356-018-3070-3.
Li, F., J. Duan, S. Tian, H. Ji, Y. Zhu, Z. Wei, and D. Zhao. 2020. “Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment.” Chem. Eng. J. 380 (Jan): 122506. https://doi.org/10.1016/J.CEJ.2019.122506.
Li, Q., et al. 2017. “Using hydrodynamic model to predict PFOS and PFOA transport in the Daling River and its tributary, a heavily polluted river into the Bohai Sea, China.” Chemosphere 167 (Jan): 344–352. https://doi.org/10.1016/j.chemosphere.2016.09.119.
Lindim, C., I. T. Cousins, and J. Vangils. 2015. “Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model.” Environ. Pollut. 207 (Dec): 97–106. https://doi.org/10.1016/j.envpol.2015.08.050.
Lindim, C., J. van Gils, and I. T. Cousins. 2016. “A large-scale model for simulating the fate & transport of organic contaminants in river basins.” Chemosphere 144 (Feb): 803–810. https://doi.org/10.1016/j.chemosphere.2015.09.051.
Liu, L., Y. Qu, J. Huang, and R. Weber. 2021. “Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution.” Environ. Sci. Eur. 33 (6): 1–12. https://doi.org/10.1186/s12302-020-00425-3.
Lyu, Y., M. L. Brusseau, W. Chen, N. Yan, X. Fu, and X. Lin. 2018. “Adsorption of PFOA at the air–water interface during transport in unsaturated porous media.” Environ. Sci. Technol. 52 (14): 7745–7753. https://doi.org/10.1021/acs.est.8b02348.
Mahinroosta, R., L. Senevirathna, M. Li, and K. KrishnaPillai. 2021. “A methodology for transport modelling of a contaminated site with perfluorooctane sulfonate due to climate interaction.” Process Saf. Environ. Prot. 147 (Mar): 642–653. https://doi.org/10.1016/j.psep.2020.12.034.
Marin, C. M., V. Guvanasen, and Z. A. Saleem. 2010. “The 3MRA risk assessment framework—A flexible approach for performing multimedia, multipathway, and multireceptor risk assessments under uncertainty.” Hum. Ecol. Risk Assess. 9 (7): 1655–1677. https://doi.org/10.1080/714044790.
Martin, J. W., S. A. Mabury, K. R. Solomon, and D. C. G. Muir. 2003. “Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus Mykiss).” Environ. Toxicol. Chem. 22 (1): 196. https://doi.org/10.1002/etc.5620220126.
Mastrantonio, M., E. Bai, R. Uccelli, V. Cordiano, A. Screpanti, and P. Crosignani. 2018. “Drinking water contamination from perfluoroalkyl substances (PFAS): An ecological mortality study in the Veneto Region, Italy.” Eur. J. Public Health 28 (1): 180–185. https://doi.org/10.1093/eurpub/ckx066.
Mazzoni, M., C. Ferrario, R. Bettinetti, R. Piscia, D. Cicala, P. Volta, K. Borgå, S. Valsecchi, and S. Polesello. 2020. “Trophic magnification of legacy (PCB, DDT and Hg) and emerging pollutants (PFAS) in the fish community of a small protected Southern Alpine Lake (Lake Mergozzo, Northern Italy).” Water 12 (6): 1591. https://doi.org/10.3390/w12061591.
McKenzie, E. R., R. L. Siegrist, J. E. McCray, and C. P. Higgins. 2016. “The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport.” Water Res. 92 (Apr): 199–207. https://doi.org/10.1016/j.watres.2016.01.025.
McLachlan, M. S., S. Felizeter, M. Klein, M. Kotthoff, and P. De Voogt. 2019. “Fate of a perfluoroalkyl acid mixture in an agricultural soil studied in lysimeters.” Chemosphere 223 (May): 180–187. https://doi.org/10.1016/j.chemosphere.2019.02.012.
Mei, W., H. Sun, M. Song, L. Jiang, Y. Li, W. Lu, G. G. Ying, C. Luo, and G. Zhang. 2021. “Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: Sorption, root uptake, and translocation.” Environ. Int. 156 (Nov): 106642. https://doi.org/10.1016/j.envint.2021.106642.
Möller, A., L. Ahrens, R. Surm, J. Westerveld, F. Van Der Wielen, R. Ebinghaus, and P. De Voogt. 2010. “Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed.” Environ. Pollut. 158 (10): 3243–3250. https://doi.org/10.1016/j.envpol.2010.07.019.
Moody, C. A., G. N. Hebert, S. H. Strauss, and J. A. Field. 2003. “Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.” J. Environ. Monit. 5 (2): 341–345. https://doi.org/10.1039/b212497a.
Navarro, I., A. de la Torre, P. Sanz, M. Á. Porcel, J. Pro, G. Carbonell, and M. Martínez. 2017. “Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils.” Environ. Res. 152 (Mar): 199–206. https://doi.org/10.1016/j.envres.2016.10.018.
Nguyen, T. V., M. Reinhard, H. Chen, and K. Y. H. Gin. 2016. “Fate and transport of perfluoro- and polyfluoroalkyl substances including perfluorooctane sulfonamides in a managed urban water body.” Environ. Sci. Pollut. Res. 23 (11): 10382–10392. https://doi.org/10.1007/s11356-016-6788-9.
Nilsson, H., A. Kärrman, A. Rotander, B. Van Bavel, G. Lindström, and H. Westberg. 2013. “Professional ski waxers’ exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions.” Environ. Sci. 15 (4): 814–822. https://doi.org/10.1039/C3EM30739E.
Pajević, S., M. Borišev, S. Rončević, D. Vukov, and R. Igić. 2008. “Heavy metal accumulation of Danube River aquatic plants—Indication of chemical contamination.” Cent. Eur. J. Biol. 3 (3): 285–294.
Park, R. A., and J. S. Clough. 2014. Aquatox (release 3.1 plus) modeling environmental fate and ecological effects in aquatic ecosystems. Washington, DC: USEPA.
Park, R. A., J. S. Clough, and M. C. Wellman. 2007. “AQUATOX: Modeling fate of toxic organics in the Galveston bay ecosystem.” In Proc., 8th Biennial State of the Bay Symp. Galveston, TX: Galveston Island and Convention Center.
Patil, S. B., and H. S. Chore. 2014. “Contaminant transport through porous media: An overview of experimental and numerical studies.” Adv. Environ. Res. 3 (1): 45–69. https://doi.org/10.12989/aer.2014.3.1.045.
Penland, T. N., W. G. Cope, T. J. Kwak, M. J. Strynar, C. A. Grieshaber, R. J. Heise, and F. W. Sessions. 2020. “Trophodynamics of per-and polyfluoroalkyl substances in the food web of a large Atlantic Slope River.” Environ. Sci. Technol. 54 (11): 6800–6811. https://doi.org/10.1021/acs.est.9b05007.
Persson, J., and N. Andersson. 2016. Modeling groundwater flow and PFOS transport. Stockholm, Sweden: KTH Royal Institute of Technology.
Pettersson, K. 2020. Groundwater movement and PFAS transportation in the Vreta-Bålsta Esker. Uppsala, Sweden: Uppsala Univ.
Popovic, M., R. Zaja, K. Fent, and T. Smital. 2014. “Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1).” Toxicol. Appl. Pharmacol. 280 (1): 149–158. https://doi.org/10.1016/j.taap.2014.07.015.
Rahman, M. F., S. Peldszus, and W. B. Anderson. 2014. “Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review.” Water Res. 50 (Mar): 318–340. https://doi.org/10.1016/j.watres.2013.10.045.
Raschke, A., A. P. Nejadhashemi, V. Rafiei, N. Fernandez, A. Shabani, and S. Li. 2022. “Opportunities and challenges of integrated large-scale PFAS modeling. A case study for PFAS modeling at a watershed scale.” J. Environ. Eng. 148 (9): 05022005. https://doi.org/10.1061/(ASCE)EE.1943-7870.0002034.
Redmon, J. H., D. Womack, T. Lillys, R. Truesdale, and D. Knappe. 2019. A hydrogeological modeling approach to understand the fate and transport of PFAS in the Cape Fear watershed. Raleigh, NC: Research Triangle Park.
Richards, L. A. 1931. “Capillary conduction of liquids through porous mediums.” J. Appl. Phys. 1 (5): 318–333. https://doi.org/10.1063/1.1745010.
Runnalls, T. J., L. Margiotta-Casaluci, S. Kugathas, and J. P. Sumpter. 2010. “Pharmaceuticals in the aquatic environment: Steroids and anti-steroids as high priorities for research.” Hum. Ecol. Risk Assess. 16 (6): 1318–1338. https://doi.org/10.1080/10807039.2010.526503.
Salice, C. J., T. A. Anderson, R. H. Anderson, and A. D. Olson. 2018. “Ecological risk assessment of perfluooroctane sulfonate to aquatic fauna from a bayou adjacent to former fire training areas at a US Air Force installation.” Environ. Toxicol. Chem. 37 (8): 2198–2209. https://doi.org/10.1002/etc.4162.
Sander, L. C., M. M. Schantz, and S. A. Wise. 2017. “Environmental analysis: Persistent organic pollutants.” In Vol. 2 of Liquid chromatography: Applications. 2nd ed., 401–449. New York: Elsevier. https://doi.org/10.1016/B978-0-12-805392-8.00014-1.
Sardiña, P., P. Leahy, A. Hinwood, L. Metzeling, and G. Stevenson. 2019. “Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems.” Sci. Total Environ. 695 (Dec): 133842. https://doi.org/10.1016/j.scitotenv.2019.133842.
Schaefer, C. E., V. Culina, D. Nguyen, and J. Field. 2019. “Uptake of poly- and perfluoroalkyl substances at the air−water interface.” Environ. Sci. Technol. 53 (21): 12442–12448. https://doi.org/10.1021/acs.est.9b04008.
Shin, H. M., V. M. Vieira, P. B. Ryan, R. Detwiler, B. Sanders, K. Steenland, and S. M. Bartell. 2011. “Environmental fate and transport modeling for perfluorooctanoic acid emitted from the Washington works facility in West Virginia.” Environ. Sci. Technol. 45 (4): 1435–1442. https://doi.org/10.1021/es102769t.
Silva, J. A. K., J. Šimůnek, and J. E. McCray. 2020. “A modified HYDRUS model for simulating PFAS transport in the vadose zone.” Water 12 (10): 2758. https://doi.org/10.3390/w12102758.
Sima, M. W., and P. R. Jaffé. 2021. “A critical review of modeling poly- and perfluoroalkyl substances (PFAS) in the soil-water environment.” Sci. Total Environ. 757 (Feb): 143793. https://doi.org/10.1016/j.scitotenv.2020.143793.
Simmonet-Laprade, C., H. Budzinski, M. Babut, K. Le Menach, G. Munoz, M. Lauzent, B. J. D. Ferrari, and P. Labadie. 2019. “Investigation of the spatial variability of poly- and perfluoroalkyl substance trophic magnification in selected riverine ecosystems.” Sci. Total Environ. 686 (Oct): 393–401. https://doi.org/10.1016/j.scitotenv.2019.05.461.
Simon, J. A., et al. 2019. “PFAS experts symposium: Statements on regulatory policy, chemistry and analtyics, toxicology, transport/fate, and remediation for per- and polyfluoroalkyl substances (PFAS) contamination issues.” Remediation 29 (4): 31–48. https://doi.org/10.1002/rem.21624.
Šimůnek, J., and S. A. Bradford. 2008. “Vadose zone modeling: Introduction and importance.” Vadose Zone J. 7 (2): 581–586. https://doi.org/10.2136/vzj2008.0012.
Šimůnek, J., M. T. Van Genuchten, and M. Šejna. 2011. HYDRUS technical manual version 2.0. Prague, Czech Republic: PC-Progress.
Šimůnek, J., M. T. Van Genuchten, and M. Šejna. 2016. “Recent developments and applications of the HYDRUS computer software packages review and analysis.” Vadose Zone J. 15 (7): 1–25. https://doi.org/10.2136/vzj2016.04.0033.
Stahl, T., R. A. Riebe, S. Falk, K. Failing, and H. Brunn. 2013. “Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: Results of a pilot study.” J. Agric. Food Chem. 61 (8): 1784–1793. https://doi.org/10.1021/jf305003h.
Toms, L. M. L., J. Bräunig, S. Vijayasarathy, S. Phillips, P. Hobson, L. L. Aylward, M. D. Kirk, and J. F. Mueller. 2019. “Per- and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference values for selected compounds.” Int. J. Hyg. Environ. Health 222 (3): 387–394. https://doi.org/10.1016/j.ijheh.2019.03.004.
Torres-Olvera, M. J., O. Y. Durán-Rodríguez, U. Torres-García, R. Pineda-López, and J. P. Ramírez-Herrejón. 2018. “Validation of an index of biological integrity based on aquatic macroinvertebrates assemblages in two subtropical basins of central Mexico.” Lat. Am. J. Aquat. Res. 46 (5): 945–960. https://doi.org/10.3856/vol46-issue5-fulltext-8.
Tsuda, S. 2016. “Differential toxicity between perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA).” J. Toxicol. Sci. 41 (Dec): SP27–SP36. https://doi.org/10.2131/jts.41.SP27.
Tysklind, M., I. Fängmark, S. Marklund, A. Lindskog, L. Thaning, and C. Rappe. 1993. “Atmospheric transport and transformation of polychlorinated dibenzo-p-dioxins and dibenzofurans.” Environ. Sci. Technol. 27 (10): 2190–2197. https://doi.org/10.1021/es00047a028.
USDA. 1986. Urban hydrology for small watersheds. Washington, DC: USDA.
USEPA. 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Washington, DC: USEPA.
USEPA. 2017. Technical fact sheet—Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA).
USEPA. 2018a. “Basic information on PFAS.” PFOA, PFOS and Other PFASs. Accessed January 4, 2021. https://www.epa.gov/pfas/basic-information-pfas.
USEPA. 2018b. “Ground water.” Report on the Environment. Accessed August 30, 2021. https://www.epa.gov/report-environment/ground-water.
USEPA. 2019. EPA’s per- and polyfluoroalkyl substances (PFAS) action plan. Washington, DC: USEPA.
USEPA. 2021. “Basic information about biosolids.” Biosolids. Accessed October 26, 2021. https://www.epa.gov/biosolids/basic-information-about-biosolids.
Vierke, L., U. Berger, and I. T. Cousins. 2013. “Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport.” Environ. Sci. Technol. 47 (Oct): 11032–11039. https://doi.org/10.1021/es402691z.
Wang, T. T., G. G. Ying, L. Y. He, Y. S. Liu, and J. L. Zhao. 2020a. “Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale.” Sci. Total Environ. 733 (Sep): 139383. https://doi.org/10.1016/j.scitotenv.2020.139383.
Wang, W., G. Rhodes, J. Ge, X. Yu, and H. Li. 2020b. “Uptake and accumulation of per- and polyfluoroalkyl substances in plants.” Chemosphere 261 (Dec): 127584. https://doi.org/10.1016/j.chemosphere.2020.127584.
Wei, C., X. Song, Q. Wang, and Z. Hu. 2017. “Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties.” Ecotoxicol. Environ. Saf. 142 (Aug): 40–50. https://doi.org/10.1016/j.ecoenv.2017.03.040.
Weill, S., E. Mouche, and J. Patin. 2009. “A generalized Richards equation for surface/subsurface flow modelling.” J. Hydrol. 366 (1–4): 9–20. https://doi.org/10.1016/j.jhydrol.2008.12.007.
Wen, B., L. Li, Y. Liu, H. Zhang, X. Hu, X. Shan, and S. Zhang. 2013. “Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2).” Plant Soil 370 (1): 345–354. https://doi.org/10.1007/s11104-013-1637-9.
WHO (World Health Organisation). 2018. A global overview of national regulations and standards for drinking-water quality. Geneva: WHO.
Winchell, M., and M. Propato. 2019. Demonstration of an agricultural chemical fate and transport model to determine biosolids PFAS screening level concentrations required for groundwater protection. Montpelier, VT: Stone Environmental Incorporated.
Wood, Ramboll, and COWI. 2020. “The use of PFAS and fluorine-free alternatives in fire-fighting foams.” Accessed June 5, 2020. https://echa.europa.eu/documents/10162/28801697/pfas_flourine-free_alternatives_fire_fighting_en.pdf/d5b24e2a-d027-0168-cdd8-f723c675fa98.
Wool, T., R. B. Ambrose, J. L. Martin, and A. Comer. 2020. “WASP 8: The next generation in the 50-year evolution of USEPA’s water quality model.” Water 12 (5): 1398. https://doi.org/10.3390/w12051398.
Xu, F. L., Y. L. Li, Y. Wang, W. He, X. Z. Kong, N. Qin, W. X. Liu, W. J. Wu, and S. E. Jorgensen. 2015. “Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment.” Ecol. Indic. 54 (Jul): 227–237. https://doi.org/10.1016/j.ecolind.2015.02.001.
Zha, Y., J. Yang, J. Zeng, C.-H. M. Tso, W. Zeng, and L. Shi. 2019. “Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils.” Wiley Interdiscip. Rev.: Water 6 (5): e1364. https://doi.org/10.1002/wat2.1364.
Zhan, X.-H., H.-L. Ma, L.-X. Zhou, J.-R. Liang, T.-H. Jiang, and G.-H. Xu. 2010. “Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: Passive or active uptake?” BMC Plant Biol. 10 (1): 1–8. https://doi.org/10.1186/1471-2229-10-52.
Zhang, W., D. Zhang, D. V. Zagorevski, and Y. Liang. 2019. “Exposure of Juncus effusus to seven perfluoroalkyl acids: Uptake, accumulation and phytotoxicity.” Chemosphere 233 (Oct): 300–308. https://doi.org/10.1016/j.chemosphere.2019.05.258.
Zhao, S., Q. Yang, B. Wang, Y. Peng, J. Zhan, and L. Liu. 2018. “Effects of combined exposure to perfluoroalkyl acids and heavy metals on bioaccumulation and subcellular distribution in earthworms (Eisenia fetida) from co-contaminated soil.” Environ. Sci. Pollut. Res. 25 (29): 29335–29344.
Zheng, C., and P. P. Wang. 1999. MT3DMS—A modular three-dimensional multispecies transport model, 1–40. Alexandria, VA: Strategic Environmental Research and Development Program.
Zhou, D., M. L. Brusseau, Y. Zhang, S. Li, W. Wei, H. Sun, and C. Zheng. 2021. “Simulating PFAS adsorption kinetics, adsorption isotherms, and nonideal transport in saturated soil with tempered one-sided stable density (TOSD) based models.” J. Hazard. Mater. 411 (Jun): 125169. https://doi.org/10.1016/j.jhazmat.2021.125169.
Zhu, H., and K. Kannan. 2019. “Distribution and partitioning of perfluoroalkyl carboxylic acids in surface soil, plants, and earthworms at a contaminated site.” Sci. Total Environ. 647 (Jan): 954–961. https://doi.org/10.1016/j.scitotenv.2018.08.051.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 9September 2022

History

Published online: Jul 15, 2022
Published in print: Sep 1, 2022
Discussion open until: Dec 15, 2022

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Graduate Student, Dept. of Biosystems and Agricultural Engineering, Michigan State Univ., East Lansing, MI 48824. ORCID: https://orcid.org/0000-0002-4663-1268
Michigan State University Foundation Professor, Dept. of Biosystems and Agricultural Engineering, Michigan State Univ., East Lansing, MI 48824 (corresponding author). ORCID: https://orcid.org/0000-0002-2502-0193. Email: [email protected]
Vahid Rafiei
Graduate Student, Institute for Life Sciences and the Environment, Univ. of Southern Queensland, Toowoomba, QLD 4350, Australia.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Opportunities and Challenges of Integrated Large-Scale PFAS Modeling: A Case Study for PFAS Modeling at a Watershed Scale, Journal of Environmental Engineering, 10.1061/(ASCE)EE.1943-7870.0002034, 148, 9, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share