Technical Papers
Jun 3, 2022

A Comprehensive Study of the Electrochemical Oxidation of Diclofenac Sodium in Reverse-Osmosis Concentrate: Analysis, Reaction Kinetics, and the Effect of Electrolyte Composition

Publication: Journal of Environmental Engineering
Volume 148, Issue 8

Abstract

Electrochemical oxidation (EO) is the most promising treatment for pharmaceutical removal in an aqueous matrix, though there are limited studies investigating the EO of pharmaceuticals in a real matrix such as reverse osmosis concentrate (ROC). High electrical conductivity causes less energy consumption for EO and massive chloride concentration in ROC make it suitable for its use as an electrolyte. The application of ROC as an electrolyte for the EO of diclofenac sodium (DCF) using an indigenously prepared Ti/Ru-Sn-Sb-Ox anode is explored in this study. The removal rate increased with an increase in current density from 5 to 10  mA/cm2 for both DCF and intermediate products (IPs). The 0.005 p-value obtained using a paired t-test indicated that the results obtained using methanol as a quenching agent matched those obtained by immediate analysis (without quenching) at a 99.5% confidence level. Thus, methanol is the most suitable quenching agent in this study. The composition of electrolyte in terms of sulfate to chloride mass ratio was found to affect the removal of DCF and IPs. The maximum removal (approximately 95%) of DCF was obtained in the presence of a sulfate-to-chloride mass ratio ranging from 0.85 to 1.35. The phytotoxicity level increased from 3% to 9% after 120 min of EO, which is not significant compared with similar previous studies.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article or its Supplemental Materials.

Acknowledgments

The authors are thankful to DST-PURSE for the Junior Research Fellowship to Katha. The authors also acknowledge the financial support of DST-FIST, Government of India [No. 329 SR/FST/ETI-395/2015(C)], the Linde Engineering India Trust for the development of research facilities at the Environmental Engineering Laboratory of the Civil Engineering Department, Faculty of Technology and Engineering (FTE), Maharaja Sayajirao Univ.

References

Ahn, Y. Y., and E. T. Yun. 2019. “Heterogeneous metals and metal-free carbon materials for oxidative degradation through persulfate activation: A review of heterogeneous catalytic activation of persulfate related to oxidation mechanism.” Korean J. Chem. Eng. 36 (11): 1767–1779. https://doi.org/10.1007/s11814-019-0398-4.
Almomani, F., and E. A. Baranova. 2013. “Kinetic study of electro-Fenton oxidation of azo dyes on boron-doped diamond electrode.” Environ. Technol. 34 (11): 1473–1479. https://doi.org/10.1080/09593330.2012.758644.
Aquino, J. M., M. A. Rodrigo, R. C. Rocha-Filho, C. Sáez, and P. Cañizares. 2012. “Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes.” Chem. Eng. J. 184 (Mar): 221–227. https://doi.org/10.1016/j.cej.2012.01.044.
Barazesh, J. M., C. Prasse, and D. L. Sedlak. 2016. “Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions.” Environ. Sci. Technol. 50 (18): 10143–10152. https://doi.org/10.1021/acs.est.6b02232.
Blair, B. D., J. P. Crago, C. J. Hedman, R. J. F. Treguer, C. Magruder, L. S. Royer, and R. D. Klaper. 2013. “Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater.” Sci. Total Environ. 444 (Feb): 515–521. https://doi.org/10.1016/j.scitotenv.2012.11.103.
Calzadilla, W., L. C. Espinoza, M. S. Diaz-Cruz, A. Sunyer, M. Aranda, C. Peña-Farfal, and R. Salazar. 2021. “Simultaneous degradation of 30 pharmaceuticals by anodic oxidation: Main intermediaries and by-products.” Chemosphere 269 (Apr): 128753. https://doi.org/10.1016/j.chemosphere.2020.128753.
Cassani, S., and P. Gramatica. 2015. “Identification of potential PBT behavior of personal care products by structural approaches.” Sustainable Chem. Pharm. 1 (Jun): 19–27. https://doi.org/10.1016/j.scp.2015.10.002.
Cruz-Díaz, M. R., E. P. Rivero, F. A. Rodríguez, and R. Domínguez-Bautista. 2018. “Experimental study and mathematical modeling of the electrochemical degradation of dyeing wastewaters in presence of chloride ion with dimensional stable anodes (DSA) of expanded meshes in a FM01-LC reactor.” Electrochim. Acta 260 (Jan): 726–737. https://doi.org/10.1016/j.electacta.2017.12.025.
Deborde, M., and U. von Gunten. 2008. “Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review.” Water Res. 42 (1–2): 13–51. https://doi.org/10.1016/j.watres.2007.07.025.
Diana, M., M. Felipe-Sotelo, and T. Bond. 2019. “Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review.” Water Res. 162 (Oct): 492–504. https://doi.org/10.1016/j.watres.2019.07.014.
Ding, J., Q. Gao, B. Cui, Q. Zhao, G. Zhao, S. Qiu, L. Bu, and S. Zhou. 2021. “Solar-assisted electrooxidation process for enhanced degradation of bisphenol A: Performance and mechanism.” Sep. Purif. Technol. 277 (May): 119467. https://doi.org/10.1016/j.seppur.2021.119467.
Dirany, A., I. Sirés, N. Oturan, and M. A. Oturan. 2010. “Electrochemical abatement of the antibiotic sulfamethoxazole from water.” Chemosphere 81 (5): 594–602. https://doi.org/10.1016/j.chemosphere.2010.08.032.
Eiserich, J. P., C. E. Cross, A. Daniel Jones, B. Halliwell, and A. Van der Vliet. 1996. “Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification.” J. Biol. Chem. 271 (32): 19199–19208. https://doi.org/10.1074/jbc.271.32.19199.
Elmolla, E. S., and M. Chaudhuri. 2009. “Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process.” J. Hazard. Mater. 172 (2–3): 1476–1481. https://doi.org/10.1016/j.jhazmat.2009.08.015.
Esplugas, S., D. M. Bila, L. G. T. Krause, and M. Dezotti. 2007. “Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents.” J. Hazard. Mater. 149 (3): 631–642. https://doi.org/10.1016/j.jhazmat.2007.07.073.
Feng, Y., L. Yang, J. Liu, and B. E. Logan. 2016. “Electrochemical technologies for wastewater treatment and resource reclamation.” Environ. Sci.: Water Res. Technol. 2 (5): 800–831. https://doi.org/10.1039/c5ew00289c.
Ganiyu, S. O., and M. Gamal El-Din. 2020. “Insight into in-situ radical and non-radical oxidative degradation of organic compounds in complex real matrix during electrooxidation with boron doped diamond electrode: A case study of oil sands process water treatment.” Appl. Catal., B 279 (Dec): 119366. https://doi.org/10.1016/j.apcatb.2020.119366.
García-Espinoza, J. D., and P. M. Nacheva. 2019. “Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: Parametric optimization, kinetic studies and toxicity assessment.” Sci. Total Environ. 691 (Nov): 417–429. https://doi.org/10.1016/j.scitotenv.2019.07.118.
García-Fernández, A. J., and K. Roy Editor. 2020. Methods in pharmacology and toxicology ecotoxicological QSARs, New York: Springer. https://doi.org/10.1007/978-1-0716-0150-1.
Guo, D., Y. Liu, H. Ji, C. C. Wang, B. Chen, C. Shen, F. Li, Y. Wang, P. Lu, and W. Liu. 2021. “Silicate-enhanced heterogeneous flow-through electro-fenton system using iron oxides under nanoconfinement.” Environ. Sci. Technol. 55 (6): 4045–4053. https://doi.org/10.1021/acs.est.1c00349.
Guo, K., Z. Wu, C. Shang, B. Yao, S. Hou, X. Yang, W. Song, and J. Fang. 2017. “Radical chemistry and structural relationships of PPCP degradation by UV/Chlorine treatment in simulated drinking water.” Environ. Sci. Technol. 51 (18): 10431–10439. https://doi.org/10.1021/acs.est.7b02059.
He, Y., L. Wang, Z. Chen, B. Shen, J. Wei, P. Zeng, and X. Wen. 2021. “Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism.” Sci. Total Environ. 785 (Sep): 147328. https://doi.org/10.1016/j.scitotenv.2021.147328.
How, Z. T., I. Kristiana, F. Busetti, K. L. Linge, and C. A. Joll. 2017. “Organic chloramines in chlorine-based disinfected water systems: A critical review.” J. Environ. Sci. 58 (Aug): 2–18. https://doi.org/10.1016/j.jes.2017.05.025.
Hu, A., X. Zhang, D. Luong, K. D. Oakes, M. R. Servos, R. Liang, S. Kurdi, P. Peng, and Y. Zhou. 2012. “Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment.” Waste Biomass Valorization 3 (4): 443–449. https://doi.org/10.1007/s12649-012-9142-6.
Jin, L., S. You, Y. Yao, H. Chen, Y. Wang, and Y. Liu. 2021. “An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination.” J. Mater. Chem. A 9 (46): 25964–25973. https://doi.org/10.1039/D1TA07396F.
Keen, O. S., A. D. Dotson, and K. G. Linden. 2013. “Evaluation of hydrogen peroxide chemical quenching agents following an advanced oxidation process.” J. Environ. Eng. 139 (1): 137–140. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000619.
Khan, M., C. S. L. Fung, A. Kumar, J. He, and I. M. C. Lo. 2019. “Unravelling mechanistic reasons for differences in performance of different Ti- and Bi-based magnetic photocatalysts in photocatalytic degradation of PPCPs.” Sci. Total Environ. 686 (Oct): 878–887. https://doi.org/10.1016/j.scitotenv.2019.05.340.
Khraisheh, M., J. Kim, L. Campos, A. H. Al-Muhtaseb, A. Al-Hawari, M. Al Ghouti, and G. M. Walker. 2014. “Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2-Coconut Shell Powder (TCNSP) composite.” J. Ind. Eng. Chem. 20 (3): 979–987. https://doi.org/10.1016/j.jiec.2013.06.032.
Kristiana, I., A. Lethorn, C. Joll, and A. Heitz. 2014. “To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples.” Water Res. 59: 90–98. https://doi.org/10.1016/j.watres.2014.04.006.
Kuang, J., J. Huang, B. Wang, Q. Cao, S. Deng, and G. Yu. 2013. “Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity.” Water Res. 47 (8): 2863–2872. https://doi.org/10.1016/j.watres.2013.02.048.
Kumar, A., B. Prasad, and K. K. Garg. 2021. “Enhanced catalytic activity of series LaCuxFe1-xO3 (x=0.2, 0.4, 0.6, 0.8) perovskite-like catalyst for the treatment of highly toxic ABS resin wastewater: Phytotoxicity study, parameter optimization and reaction pathways.” Process Saf. Environ. Prot. 147 (Mar): 162–180. https://doi.org/10.1016/j.psep.2020.09.020.
Li, F., L. Sun, Y. Liu, X. Fang, C. Shen, M. Huang, Z. Wang, and D. D. Dionysiou. 2020. “A ClO[rad]-mediated photoelectrochemical filtration system for highly-efficient and complete ammonia conversion.” J. Hazard. Mater. 400 (Dec): 123246. https://doi.org/10.1016/j.jhazmat.2020.123246.
Liu, Y. J., C. Y. Hu, and S. L. Lo. 2019. “Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes.” J. Hazard. Mater. 366 (Mar): 592–605. https://doi.org/10.1016/j.jhazmat.2018.12.037.
Luna-Trujillo, M., R. Palma-Goyes, J. Vazquez-Arenas, and A. Manzo-Robledo. 2020. “Formation of active chlorine species involving the higher oxide MOx+1 on active Ti/RuO2-IrO2 anodes: A DEMS analysis.” J. Electroanal. Chem. 878 (Dec): 114661. https://doi.org/10.1016/j.jelechem.2020.114661.
Luo, H., Y. Zeng, D. He, and X. Pan. 2021. “Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review.” Chem. Eng. J. 407 (Mar): 127191. https://doi.org/10.1016/j.cej.2020.127191.
Luongo, G., M. Guida, A. Siciliano, G. Libralato, L. Saviano, A. Amoresano, L. Previtera, G. Di Fabio, and A. Zarrelli. 2021. “Oxidation of diclofenac in water by sodium hypochlorite: Identification of new degradation by-products and their ecotoxicological evaluation.” J. Pharm. Biomed. Anal. 194 (Feb): 113762. https://doi.org/10.1016/j.jpba.2020.113762.
Martínez-Sánchez, C., I. Robles, and L. A. Godínez. 2022. “Review of recent developments in electrochemical advanced oxidation processes: Application to remove dyes, pharmaceuticals, and pesticides.” Int. J. Environ. Sci. Technol. 1–68. https://doi.org/10.1007/s13762-021-03762-9.
Masud, A., N. G. Chavez Soria, D. S. Aga, and N. Aich. 2020. “Adsorption and advanced oxidation of diverse pharmaceuticals and personal care products (PPCPs) from water using highly efficient rGO-nZVI nanohybrids.” Environ. Sci.: Water Res. Technol. 6 (8): 2223–2238. https://doi.org/10.1039/d0ew00140f.
Mijin, D. Ž., M. L. Avramov Ivić, A. E. Onjia, and B. N. Grgur. 2012. “Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine.” Chem. Eng. J. 204–205 (Sep): 151–157. https://doi.org/10.1016/j.cej.2012.07.091.
Murrieta, M. F., E. Brillas, J. L. Nava, and I. Sirés. 2020. “Photo-assisted electrochemical production of HClO and Fe2+ as Fenton-like reagents in chloride media for sulfamethoxazole degradation.” Sep. Purif. Technol. 250 (Nov): 117236. https://doi.org/10.1016/j.seppur.2020.117236.
Oriol, R., M. del Pilar Bernícola, E. Brillas, P. L. Cabot, and I. Sirés. 2019. “Paired electro-oxidation of insecticide imidacloprid and electrodenitrification in simulated and real water matrices.” Electrochim. Acta 317 (Sep): 753–765. https://doi.org/10.1016/j.electacta.2019.05.002.
Ortiz de García, S., G. P. Pinto, P. A. García-Encina, and R. I. Mata. 2013. “Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: An application to the Spanish case.” J. Environ. Manage. 129 (Nov): 384–397. https://doi.org/10.1016/j.jenvman.2013.06.035.
Palma-Goyes, R. E., J. Silva-Agredo, J. Vazquez-Arenas, I. Romero-Ibarra, and R. A. Torres-Palma. 2018. “The effect of different operational parameters on the electrooxidation of indigo carmine on Ti/IrO2-SnO2-Sb2O3.” J. Environ. Chem. Eng. 6 (2): 3010–3017. https://doi.org/10.1016/j.jece.2018.04.035.
Palma-Goyes, R. E., J. Vazquez-Arenas, C. Ostos, F. Ferraro, R. A. Torres-Palma, and I. Gonzalez. 2016. “Microstructural and electrochemical analysis of Sb2O5 doped-Ti/RuO2-ZrO2 to yield active chlorine species for ciprofloxacin degradation.” Electrochim. Acta 213 (Sep): 740–751. https://doi.org/10.1016/j.electacta.2016.07.150.
Pointer Malpass, G. R., and A. de Jesus Motheo. 2021. “Recent advances on the use of active anodes in environmental electrochemistry.” Curr. Opin. Electrochem. 27 (Jun): 100689. https://doi.org/10.1016/j.coelec.2021.100689.
Rani, S., A. Garg, and N. Singh. 2021. “Photocatalytic degradation and mineralization of amoxicillin and ofloxacin using TiO2-SiO2 composites.” Toxicol. Environ. Chem. 103 (2): 137–153. https://doi.org/10.1080/02772248.2021.1931214.
Redding, A. M., F. S. Cannon, S. A. Snyder, and B. J. Vanderford. 2009. “A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons.” Water Res. 43 (15): 3849–3861. https://doi.org/10.1016/j.watres.2009.05.026.
Salazar, R., M. S. Ureta-Zañartu, C. González-Vargas, do Brito Nascimento, C., and C. A. Martinez-Huitle. 2018. “Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway.” Chemosphere 198 (May): 21–29. https://doi.org/10.1016/j.chemosphere.2017.12.092.
Santos, D. H. S., J. L. S. Duarte, M. G. R. Tavares, M. G. Tavares, L. C. Friedrich, L. Meili, W. R. O. Pimentel, J. Tonholo, and C. L. P. S. Zanta. 2020. “Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes.” Chem. Eng. Process. Process Intensif. 153 (Jul): 107940. https://doi.org/10.1016/j.cep.2020.107940.
Shukla, P. R., S. Wang, H. M. Ang, and M. O. Tadé. 2010. “Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light.” Sep. Purif. Technol. 70 (3): 338–344. https://doi.org/10.1016/j.seppur.2009.10.018.
Sierra-Rosales, P., C. Berríos, S. Miranda-Rojas, and J. A. Squella. 2018. “Experimental and theoretical insights into the electrooxidation pathway of azo-colorants on glassy carbon electrode.” Electrochim. Acta 290 (Nov): 556–567. https://doi.org/10.1016/j.electacta.2018.09.090.
Soni, B. D., U. D. Patel, A. Agrawal, and J. P. Ruparelia. 2020. “Electrochemical destruction of RB5 on Ti/PtOxRuO2SnO2Sb2O5 electrodes: A comparison of two methods for electrode preparation.” Int. J. Environ. Sci. Technol. 17 (2): 903–916. https://doi.org/10.1007/s13762-019-02393-5.
Stupar, S. L., B. N. Grgur, M. M. Radišić, A. E. Onjia, N. D. Ivanković, A. V. Tomašević, and D. Mijin. 2020. “Oxidative degradation of Acid Blue 111 by electro-assisted Fenton process.” J. Water Process Eng. 36 (Aug): 101394. https://doi.org/10.1016/j.jwpe.2020.101394.
Szpyrkowicz, L., C. Juzzolino, S. N. Kaul, S. Daniele, and M. D. De Faveri. 2000. “Electrochemical oxidation of dyeing baths bearing disperse dyes.” Ind. Eng. Chem. Res. 39 (9): 3241–3248. https://doi.org/10.1021/ie9908480.
Szpyrkowicz, L., M. Radaelli, S. Daniele, A. Baldacci, and S. Kaul. 2007. “Application of electro-catalytic mediated oxidation for the treatment of a spent textile bath in a membrane reactor.” Ind. Eng. Chem. Res. 46 (21): 6732–6736. https://doi.org/10.1021/ie0616388.
Vijayakumar, S., J. Chen, M. Amarnath, K. Tungare, M. Bhori, M. Divya, Z. I. González-Sánchez, E. F. Durán-Lara, and B. Vaseeharan. 2021. “Cytotoxicity, phytotoxicity, and photocatalytic assessment of biopolymer cellulose-mediated silver nanoparticles.” Colloids Surf., A 628 (Nov): 127270. https://doi.org/10.1016/j.colsurfa.2021.127270.
Wang, H., Y. Shen, Z. Lou, N. Zhu, H. Yuan, and C. Liu. 2019. “Hydroxyl radicals and reactive chlorine species generation via E+-ozonation process and their contribution for concentrated leachate disposal.” Chem. Eng. J. 360 (Mar): 721–727. https://doi.org/10.1016/j.cej.2018.11.213.
Wang, J., and S. Wang. 2016. “Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review.” J. Environ. Manage. 182 (Nov): 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049.
Wang, J., T. Zhang, Y. Mei, and B. Pan. 2018. “Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP).” Chemosphere 201 (Jun): 621–626. https://doi.org/10.1016/j.chemosphere.2018.03.051.
Wang, J., and R. Zhuan. 2019. “Degradation of antibiotics by advanced oxidation processes: An overview.” Sci. Total Environ. 701 (Jan): 135023. https://doi.org/10.1016/j.scitotenv.2019.135023.
Wang, Y., C. Shen, M. Zhang, B. T. Zhang, and Y. G. Yu. 2016. “The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand.” Chem. Eng. J. 296 (Jul): 79–89. https://doi.org/10.1016/j.cej.2016.03.093.
Wei, F., D. Liao, Y. Lin, C. Hu, J. Ju, Y. Chen, and D. Feng. 2021. “Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode.” Sep. Purif. Technol. 258 (Part 2): 118056. https://doi.org/10.1016/j.seppur.2020.118056.
Xiang, Q., Y. Nomura, S. Fukahori, T. Mizuno, H. Tanaka, and T. Fujiwara. 2019. “Innovative treatment of organic contaminants in reverse osmosis concentrate from water reuse: A mini review.” Curr. Pollut. Rep. 5 (4): 294–307. https://doi.org/10.1007/s40726-019-00119-2.
Xie, R., X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y. Chen, and J. Crittenden. 2017. “Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact.” Appl. Catal., B 203 (Apr): 515–525. https://doi.org/10.1016/j.apcatb.2016.10.057.
Yang, M., and X. Zhang. 2016. “Current trends in the analysis and identification of emerging disinfection byproducts.” Trends Environ. Anal. Chem. 10 (Apr): 24–34. https://doi.org/10.1016/j.teac.2016.03.002.
Yang, Y. 2020. “Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control.” Front. Environ. Sci. Eng. 14 (5): 1–12. https://doi.org/10.1007/s11783-020-1264-7.
Yedhu, R., and S. Manikandan. 2021. “Environmental technology and innovation removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review.” Environ. Technol. Innovation 23 (Aug): 101757. https://doi.org/10.1016/j.eti.2021.101757.
Zhai, L. F., H. Y. Guo, Y. Y. Chen, M. Sun, and S. Wang. 2021. “Structure-dependent degradation of pharmaceuticals and personal care products by electrocatalytic wet air oxidation: A study by computational and experimental approaches.” Chem. Eng. J. 423 (Nov): 130167. https://doi.org/10.1016/j.cej.2021.130167.
Zhang, F., D. Zhang, T. Chang, H. Li, J. Cui, and J. Cui. 2020. “Bromate formation by the oxidation of bromide in the electrochemically activated persulfate process: Mechanism and influencing factors.” Int. J. Electrochem. Sci. 15 (1): 7282–7297. https://doi.org/10.20964/2020.08.24.
Zhou, Y., C. Chen, K. Guo, Z. Wu, L. Wang, Z. Hua, and J. Fang. 2020. “Kinetics and pathways of the degradation of PPCPs by carbonate radicals in advanced oxidation processes.” Water Res. 185 (Oct): 116231. https://doi.org/10.1016/j.watres.2020.116231.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 8August 2022

History

Received: Jan 21, 2022
Accepted: Mar 17, 2022
Published online: Jun 3, 2022
Published in print: Aug 1, 2022
Discussion open until: Nov 3, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil Engineering, Faculty of Technology and Engineering, Maharaja Sayajirao Univ. of Baroda, Kala Bhavan, Dandia Bazar, Vadodara, Gujarat 390001, India (corresponding author). ORCID: https://orcid.org/0000-0003-1480-5953. Email: [email protected]; [email protected]
Professor, Dept. of Civil Engineering, Faculty of Technology and Engineering, Maharaja Sayajirao Univ. of Baroda, Kala Bhavan, Dandia Bazar, Vadodara, Gujarat 390001, India. ORCID: https://orcid.org/0000-0002-5342-9690

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share