Abstract

Heavy metals in industrial waste cause environmental damage because they metals are toxic, nonbiodegradable, and are bioaccumulated. As such, treatments are needed to reduce heavy metals to legally acceptable levels before disposal. As such, the aim of this study was to assess copper ion adsorption in aqueous solution using Ranufe bentonite (raw, sodium and pillared), which is abundant in Northeastern Brazil. Sodium bentonite was obtained using ionic exchange with sodium acetate and pillared bentonite was formulated with a pillarizing agent (aluminum hydroxide and sodium). Treatment efficiency was assessed using Brunauer–Emmett–Teller (BET), X-ray fluorescence (XRF), and X-ray diffraction (XRD) analyses. The surface area obtained by BET showed behavior characteristics of a mesoporous material. XRD exhibited basal spacing consistent with the pattern of clays. XRF analyses confirmed the changes on the raw bentonite surface, proving its transformation in the sodium and pillared forms. Adsorption capacity was assessed as a function of pH, contact time, adsorbent mass, initial metal concentration, ligand and co-ion effects on copper removal efficiency, reaching a maximum rate of 85.76%. Adsorption isotherms were fit to the Langmuir model, assuming adsorption on homogeneous surfaces in the form of monolayers, with maximum adsorption capacity of 12.92  mg/g1 (raw bentonite) and 24.51  mg/g1 (sodium bentonite). The kinetic study demonstrated that bentonite (raw and sodium) fit the pseudo-second-order kinetic model, indicating a process governed by ionic exchange between copper and the ions present in the bentonite layers. The thermodynamic adsorption parameters demonstrated that adsorption using raw and sodium bentonite is endothermic (favored by the rise in temperature) and nonspontaneous (energy is needed to promote adsorption). In a study on desorption, four adsorption and desorption cycles were sufficient to assess the regeneration capacity of the material, showing a decrease in adsorption capacity from the first to last cycle from 69.47% to 41.33% (raw bentonite) and from 48.36% to 22.46% (sodium bentonite). A decline in adsorption capacity is related to chemical degradation caused by acid solutions and mechanical agitation during the adsorption cycles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank the Universidade Federal do Rio Grande do Norte (UFRN), in particular the Graduate Chemical Engineering Program and CAPES, for their financial assistance provided to carry out this research, and National Council for Scientific and Technological Development (CNPq).

References

Abdolali, A., W. S. Guo, H. H. Ngo, S. S. Chen, N. C. Nguyen, and K. L. Tung. 2014. “Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review.” Bioresour. Technol. 160 (May): 57–66. https://doi.org/10.1016/j.biortech.2013.12.037.
Abdolali, A., H. H. Ngo, W. Guo, J. L. Zhou, B. Du, Q. Wei, X. C. Wang, and P. D. Nguyen. 2015. “Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.” Bioresour. Technol. 193 (Oct): 477–487. https://doi.org/10.1016/j.biortech.2015.06.123.
Abegunde, S. M., I. S. Kayode, O. M. Adejuwon, and Y. Adeyemi-Adejolu. 2020. “A review on the influence of chemical modification on the performance of adsorbents.” Resour. Environ. Sustainability 1 (Sep): 100001. https://doi.org/10.1016/j.resenv.2020.100001.
Abollino, O., M. Aceto, M. Malandrino, C. Sarzanini, and E. Mentasti. 2003. “Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.” Water Res. 37 (7): 1619–1627. https://doi.org/10.1016/S0043-1354(02)00524-9.
Acevedo, N. I. A., M. C. G. Rocha, and L. C. Bertolino. 2021. “Determination of specific surface area and porosity of two clays originated from Taubaté Basin—São Paulo.” Braz. Appl. Sci. Rev. 5 (1): 39–57. https://doi.org/10.34115/basrv5n1-004.
Ahmad, R., and A. Mirza. 2017. “Adsorption of Pb(II) and Cu(II) by Alginate-Au-Mica bionanocomposite: Kinetic, isotherm and thermodynamic studies.” Process Saf. Environ. Prot. 109 (Jul): 1–10. https://doi.org/10.1016/j.psep.2017.03.020.
Akpomie, K. G., and F. A. Dawodu. 2015. “Potential of a low-cost bentonite for heavy metal abstraction from binary component system.” Beni-Suef Univ. J. Basic Appl. Sci. 4 (1): 1–13. https://doi.org/10.1016/j.bjbas.2015.02.002.
Akpomie, K. G., F. A. Dawodu, and K. O. Adebowale. 2015. “Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential.” Alexandria Eng. J. 54 (3): 757–767. https://doi.org/10.1016/j.aej.2015.03.025.
Ali, I., M. Asim, and T. A. Khan. 2012. “Low cost adsorbents for the removal of organic pollutants from wastewater.” J. Environ. Manage. 113 (Dec): 70–183. https://doi.org/10.1016/j.jenvman.2012.08.028.
Almeida Neto, A. F., M. G. A. Vieira, and M. G. C. Silva. 2012. “Cu (II) adsorption on modified bentonitic clays: Different isotherm behaviors in static and dynamic systems.” Mater. Res. 15 (1): 114–124. https://doi.org/10.1590/S1516-14392011005000089.
Amorim, C. L. G. 2007. “Estudo do efeito das interações água-argila no inchamento de argilominerais através da difração de raios.” D.Sc. dissertation, Dept. of Nuclear Engineering, Universidade Federal do Rio de Janeiro.
Anitha, K., S. Namsani, and J. K. Singh. 2015a. “Removal of heavy metal ions using a functionalized single-walled carbon nanotube: A molecular dynamics study.” J. Phys. Chem. A 119 (30): 8349–8358. https://doi.org/10.1021/acs.jpca.5b03352.
Anitha, T., P. S. Kumar, K. S. Kumar, B. Ramkumar, and S. Ramalingam. 2015b. “Adsorptive removal of Pb (II) ions from polluted water by newly synthesized chitosan-polyacrynitrile blend: Equilibrium, kinetic, mechanism and thermodynamic approach.” Process Saf. Environ. Prot. 98 (Nov): 187–197. https://doi.org/10.1016/j.psep.2015.07.012.
Anna, B., M. Kleopas, S. Constantine, F. Anestis, and B. Maria. 2015. “Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: Study in mono and multimetal systems.” Environ. Earth Sci. 73 (9): 5435–5444. https://doi.org/10.1007/s12665-014-3798-0.
Basu, M., A. K. Guha, and L. Ray. 2017a. “Adsorption behavior of cadmium on husk of lentil.” Process Saf. Environ. Prot. 106 (Feb): 11–22. https://doi.org/10.1016/j.psep.2016.11.025.
Basu, M., A. K. Guha, and L. Ray. 2017b. “Adsorption of lead on cucumber peel.” J. Cleaner Prod. 151 (May): 603–615. https://doi.org/10.1016/j.jclepro.2017.03.028.
Batista, A. P., R. R. Menezes, L. N. Marques, L. A. Campos, G. A. Neves, and H. C. Ferreira. 2009. “Caracterização de argilas bentoníticas de Cubati-PB.” Revista Eletrônica de Materiais e Processos 4 (3): 64–71. https://doi.org/10.1590/S0366-69132009000200008.
Belur, D. P., and K. Gururajan. 2018. “Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal.” Environ. Technol. 9 (Feb): 91–99. https://doi.org/10.1016/j.eti.2017.11.001.
Benzaoui, T., A. Selatnia, and D. Djabali. 2017. “Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration.” Adsorption Sci. Technol. 36 (1–2): 114–129. https://doi.org/10.1177/0263617416685099.
Castro, M. L. F. A., M. L. B. Abad, D. A. G. Sumalinog, R. R. Abarca, P. Paoprasert, and M. D. G. Luna. 2018. “Adsorption of methylene blue dye and Cu (II) IONS on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies.” Sustainable Environ. Res. 28 (5): 197–205. https://doi.org/10.1016/j.serj.2018.04.001.
Dawodu, F. A., and K. G. Akpomie. 2014. “Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kalonite clay.” J. Mater. Res. Technol. 3 (2): 129–141. https://doi.org/10.1016/j.jmrt.2014.03.002.
Elsayed, E. E. 2018. “Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study).” Water Sci. 32 (1): 32–43. https://doi.org/10.1016/j.wsj.2018.02.001.
Emenike, P. C., D. O. Omole, B. U. Ngene, and I. T. Tenebe. 2016. “Potentiality of agricultural adsorbent for the sequestering of metal ions from waste water.” Global J. Environ. Sci. Manage. 2 (4): 411–442. https://doi.org/10.22034/gjesm.2016.21023.
Freitas, E. D., A. C. R. Carmo, A. F. Almeida Neto, and M. G. A. Vieira. 2017. “Binary adsorption of silver and copper on Verde-lodo bentonite: Kinetic and equilibrium study.” Appl. Clay Sci. 137 (May): 69–76. https://doi.org/10.1016/j.clay.2016.12.016.
Habibi, A., L. S. Belaroui, A. Bengueddach, A. L. Galinho, C. I. S. Díaz, and A. Peña. 2018. “Adsorption of metronidazole and spiramycin by Algerian palygorshite, effect of modification with tin.” Microporous Mesoporous Mater. 268 (Sep): 293–302. https://doi.org/10.1016/j.micromeso.2018.04.020.
Hu, Y., J. Kang, W. Sun, Z. Gao, R. Liu, Q. Zhang, and H. Liu. 2017. “The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.” Water Res. 125 (Nov): 318–324. https://doi.org/10.1016/j.watres.2017.08.047.
Huang, W., Y. Zhang, Y. Ge, L. Qin, and Z. Li. 2017. “Soft nitrogen and sulfur incorporated into enzymatic hydrolysis lignin as an environmentally friendly antioxidant and mercury adsorbent.” Bioresource 12 (4): 7341–7348. https://doi.org/10.15376/biores.12.4.7341-7348.
Hur, J., J. Shin, J. Yoo, and Y. Seo. 2015. “Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents.” Sci. World J. 15 (2015): 11. https://doi.org/10.1155/2015/836287.
Ioseliani, D., G. Balarjishvili, N. Kalabegashvili, and L. Samkharadze. 2020. “Copper ions adsorption from aqueous solution using perlite.” Int. J. New Technol. Res. 6 (7): 30–32. https://doi.org/10.31871/IJNTR.6.7.8.
Kadeche, A., A. Ramdani, M. Adjdir, A. Guendouzi, S. Taleb, M. Kaid, and A. Deratani. 2020. “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions.” Res. Chem. Intermed. 46 (11): 4985–5008. https://doi.org/10.1007/s11164-020-04236-2.
Kim, H. G., S. S. Kim, S. C. Kim, and H. J. Joo. 2017. “Effects of Ca2+ on biological nitrogen removal in reverse osmosis concentrate and adsorption treatment.” Ind. Eng. Chem. 57 (Jan): 216–225. https://doi.org/10.1016/j.jiec.2017.08.027.
Kyzas, G. Z., G. Bomis, R. I. Kosheleva, E. K. Efthimiadou, E. P. Favvas, M. Kostoglou, and A. C. Mitropoulos. 2019. “Nanobubbles effect on heavy metal ions adsorption by activated carbon.” Chem. Eng. J. 356 (Jan): 91–97. https://doi.org/10.1016/j.cej.2018.09.019.
Long, H., P. Wu, and N. Zhu. 2013. “Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite.” Chem. Eng. J. 225 (Jun): 237–244. https://doi.org/10.1016/j.cej.2013.03.088.
Mahdavi, S., M. Jalali, and A. Afkhami. 2013. “Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles.” Chem. Eng. Commun. 200 (3): 448–470. https://doi.org/10.1080/00986445.2012.686939.
Manohar, D. M., B. F. Noeline, and T. S. Anirudhan. 2006. “Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase.” Appl. Clay Sci. 31 (3–4): 194–206. https://doi.org/10.1016/j.clay.2005.08.008.
Mofrad, B. D., M. Rezaei, and M. Hayati-Ashtiani. 2019. “Preparation and characterization of Ni catalysts supported on pillared nanoporous bentonite powders for dry reforming reaction.” Int. J. Hydrogen Energy 44 (50): 27429–27444. https://doi.org/10.1016/j.ijhydene.2019.08.194.
Muir, B., D. Andrunik, J. Hyla, and T. Badja. 2017. “The removal of molybdates tungstates from aqueous solution by organo-smectites.” Appl. Clay Sci. 136 (Feb): 8–17. https://doi.org/10.1016/j.clay.2016.11.006.
Nascimento, P. F. P., E. L. Barros Neto, J. F. Sousa, V. T. Ribeiro, L. J. N. Duarte, R. P. F. Melo, and F. W. B. Lopes. 2021. “Metal ion adsorption using coconut shell powder activated by chemical and physical treatments.” Chem. Eng. Technol. 44 (12): 2199–2209. https://doi.org/10.1002/ceat.202100295.
Nascimento, P. F. P., E. L. B. Neto, A. J. F. Silva, and J. E. S. Pereira. 2020. “Cu2 and Cd2 adsorption mechanism by coconut husk powder with and without amine modification.” J. Environ. Chem. Eng. 146 (8): 04020076. https://doi.org/10.1061/%28ASCE%29EE.1943-7870.0001746.
Nascimento, P. F. P., J. F. Sousa, J. A. Oliveira, R. D. Possa, L. S. Santos, F. C. Carvalho, J. A. C. Ruiz, M. M. Pedroza, and M. B. Bezerra. 2017. “Wood sawdust and sewage sludge pyrolysis chars for CO2 adsorption using a magnetic suspension balance.” Can. J. Chem. Eng. 95 (11): 2148–2155. https://doi.org/10.1002/cjce.22861.
Nezamzadeh-Ejhieh, A., and M. Kabiri-Samani. 2013. “Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime.” J. Hazard. Mater. 260 (Sep): 339–349. https://doi.org/10.1016/j.jhazmat.2013.05.014.
Pereira, J. E. S., A. J. F. Silva, P. F. P. Nascimento, R. L. S. Ferreira, and E. L. B. Neto. 2020. “Carnauba straw powder treated with bentonite for copper adsorption in aqueous solution: Isothermal, kinetic and thermodynamic study.” Water Sci. Technol. 82 (10): 2178–2192. https://doi.org/10.2166/wst.2020.491.
Perelomov, L., B. Sarkar, M. Mahmudur Rahman, A. Goryacheva, and R. Naidu. 2015. “Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups.” Appl. Clay Sci. 119 (Jan): 417–423. https://doi.org/10.1016/j.clay.2015.11.004.
Rashid, A., H. N. Bhatti, M. Iqbal, and S. Noreen. 2016. “Fungal biomass composite with efficiency for nickel and zinc adsorption: A mechanistic study.” Ecol. Eng. 91 (Jun): 459–471. https://doi.org/10.1016/j.ecoleng.2016.03.014.
Reis, M. T. M. C. A. 2005. “Argilas/lamas portuguesas utilizadas em peloterapia: Propriedades físicas e químicas relevantes.” Master’s dissertation, Departamento de Geociências, Universidade de Aveiro.
Salaman, M., R. Rehman, U. Farooq, A. Tahir, and L. Mitu. 2020. “Biosorptive removal of cadmium(II) and copper(II) using microwave-assisted thiourea-modified sorghum bicolor agrowaste.” J. Chem. 2020 (Feb): 1–11. https://doi.org/10.1155/2020/8269643.
Santos, C. P. F., D. M. A. Melo, M. A. F. Melo, and E. Sobrinho. 2020. “Characterization and uses of bentonite and vermiculite clays for adsorption of copper (II) in solution.” Cerâmica 48 (308): 178–182.
Santos, P. S. 1989. Tecnologia de Argilas. São Paulo: Edgar Blücher.
Sharma, M., J. Singh, S. Hazra, and S. Basu. 2019. “Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: Adsorption and kinetic studies.” Microchem. J. 145 (Mar): 105–112. https://doi.org/10.1016/j.microc.2018.10.026.
Silva, A. J. F. 2019. “Adsorção dos íons de cobre usando pó da palha da carnaúba e bentonita: estudo cinético, termodinâmico e de equilíbrio.” Ph.D. dissertation, Centro de Tecnologia, Universidade Federal do Rio Grande do Norte.
Silva, A. J. F., M. C. P. A. Moura, E. S. Santos, J. E. S. Pereira, and E. L. B. Neto. 2018. “Copper removal using carnauba straw powder: Equilibrium, kinetics, and thermodynamic studies.” J. Environ. Chem. Eng. 6 (6): 6828–6835. https://doi.org/10.1016/j.jece.2018.10.028.
Silva, M. G. C., R. L. S. Canevesi, R. A. Welter, M. G. A. Vieira, and E. A. Silva. 2015. “Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate.” Adsorption 21 (6): 1–14. https://doi.org/10.1007/s10450-015-9682-8.
Stofela, S. K., A. F. Almeida Neto, M. L. Gimenes, and M. G. A. Vieira. 2015. “Adsorption of toluene into commercial organoclay in liquid phase.” Can. J. Chem. Eng. 93 (6): 998–1008. https://doi.org/10.1002/cjce.22174.
Sun, S., Y. Sun, M. Li, P. Yan, J. Ren, Z. Li, D. Han, S. Huanf, and Y. Zhong. 2017. “Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.” Chemosphere 185 (Oct): 1189–1196. https://doi.org/10.1016/j.chemosphere.2017.07.124.
Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguezreinoso, J. Rouquerol, and K. S. W. Sing. 2015. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report).” Pure Appl. Chem. 87 (9–10): 1051–1069. https://doi.org/10.1515/pac-2014-1117.
Tohdee, K., L. Kaewsichan, and K. L. Asadullah. 2018. “Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite.” J. Environ. Chem. Eng. 6 (2): 2821–2828. https://doi.org/10.1016/j.jece.2018.04.030.
Vhahangweleb, M., and G. W. Mugeraa. 2015. “The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions.” J. Environ. Chem. Eng. 3 (4): 2416–2425. https://doi.org/10.1016/j.jece.2015.08.016.
Vieira, M. G. A., A. F. Almeida Neto, M. L. Gimenes, and M. G. C. Silva. 2010. “Sorption kinetics equilibrium for the removal of nickel ions aqueous phase on calcined Bofe bentonite clay.” J. Hazard. Mater. 177 (1–3): 362–371. https://doi.org/10.1016/j.jhazmat.2009.12.040.
Wang, W. 2017. “Characterization and removal of organic matter from a reverse osmosis concentrate by a PAC accumulative countercurrent four-stage adsorption MF hybrid process.” Sep. Purif. Technol. 189 (Dec): 25–432. https://doi.org/10.1016/j.seppur.2017.08.002.
Wu, Z., J. Dong, Y. Yao, Y. Yang, and F. Wei. 2021. “Continuous flowing electrocoagulation reactor for efficient removal of azo dyes: Kinetic and isotherm studies of adsorption.” Environ. Technol. Innovation 22 (May): 101448. https://doi.org/10.1016/j.eti.2021.101448.
Xing, M., C. Dong, J. Lu, B. Qiu, B. Shen, and J. Zhang. 2017. “Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions.” Appl. Catal., B 222 (Mar): 146–156. https://doi.org/10.1016/j.apcatb.2017.10.011.
Yan, L., L. Shana, B. Wen, and G. Owensb. 2008. “Adsorption of cadmium onto Al13-pillared acid-activated montmorillonite.” J. Hazard. Mater. 156 (1–3): 499–508. https://doi.org/10.1016/j.jhazmat.2007.12.045.
Zhao, Y., L. Zhan, Z. Xue, K. K. Yusef, H. Hu, and M. Wu. 2020. “Adsorption of Cu (II) and Cd (II) from wastewater by sodium alginate modified materials.” J. Chem. 2020 (Aug): 1–13. https://doi.org/10.1155/2020/5496712.
Zhi-Rong, L., and Z. Shao-Qi. 2010. “Adsorption of copper and nickel on Na-bentonite.” Process Saf. Environ. Prot. 88 (1): 62–66. https://doi.org/10.1016/j.psep.2009.09.001.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 8August 2022

History

Received: Aug 18, 2021
Accepted: Feb 18, 2022
Published online: May 23, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 23, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Alfredo José Ferreira da Silva [email protected]
Postgraduate Student, Chemical Engineering Postgraduate Program, Federal Univ. of Rio Grande do Norte (UFRN), RN, Brazil. Email: [email protected]
Paula Fabiane Pinheiro do Nascimento https://orcid.org/0000-0002-0930-8656 [email protected]
Postdoctoral Researcher, Federal Univ. of Rio Grande do Norte (UFRN), RN, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-0930-8656. Email: [email protected]
Eduardo Lins de Barros Neto [email protected]
Professor, Chemical Engineering Postgraduate Program, Federal Univ. of Rio Grande do Norte (UFRN), RN, Brazil. Email: [email protected]
Professor, Dept. of Chemical Engineering, Federal Univ. of the Semiarid (UFERSA), RN, Brazil. Email: [email protected]. ORCID: https://orcid.org/0000-0001-7448-9273
Lindemberg de Jesus Nogueira Duarte [email protected]
Professor, Dept. of Petroleum Engineering, Federal Univ. of Rio Grande do Norte (UFRN), RN, Brazil. Email: [email protected]
Postgraduate Student, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke (UdeS), QC, Canada. Email: [email protected]. ORCID: https://orcid.org/0000-0001-6394-7099

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Copper ion removal from aqueous media using banana peel biochar/Fe3O4/branched polyethyleneimine, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 10.1016/j.colsurfa.2022.130736, 658, (130736), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share