Technical Papers
Apr 29, 2022

Influence of Chemical, Electrochemical Exfoliation, Hydrophilic, and Hydrophobic Binder on the Sorption Capacity of Graphene in Capacitive Deionization

Publication: Journal of Environmental Engineering
Volume 148, Issue 7

Abstract

Graphene is expected to play a significant role as a capacitive deionization (CDI) electrode due to its exceptional characteristics. However, difficulties in achieving high specific surface area (SSA) reduces the sorption capacity and limits its usage in CDI. Effort taken toward improving the SSA of graphene by adding composites and through surface modification resulted in significant SSA with lower sorption capacity. Thus, the present study investigated the effect of the synthesis method and materials used to prepare electrode slurry (binder material) on SSA and specific capacitance. Graphene was synthesized employing Hummers, modified Hummers, and electrochemical exfoliation, and its quality was characterized based on X-ray diffraction, scanning electron microscope, and ultraviolet spectra analysis. The influence of binder type on specific capacitance was assessed by fabricating the electrode with commonly used two hydrophobic and two hydrophilic binders. Sorption analysis was also carried out to study the effect of SSA and specific capacitance of graphene with selected binders. The results revealed that electrochemically exfoliated graphene yield SSA of 1,529.8  m2/g with a sorption capacity 64% and 52% greater than graphene synthesized using the Hummers and modified Hummers methods, respectively. Usage of polyvinylidene fluoride (PVdF) binder resulted in a specific capacitance of 974.45  F/g and a sorption capacity of 32.73  mg/g. Thus, graphene’s increased sorption capacity implies that the suitable method of synthesis and fabrication of electrodes with a suitable binder offers adequate SSA and specific capacitance by suppressing pseudocapacitance.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Alam, S. N., N. Sharma, and L. Kumar. 2017. “Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO).” Graphene 6 (1): 1–18. https://doi.org/10.4236/graphene.2017.61001.
Allgayer, R., N. Yousefi, and N. Tufenkji. 2020. “Graphene oxide sponge as adsorbent for organic contaminants: Comparison with granular activated carbon and influence of water chemistry.” Environ. Sci. Nano 7 (9): 2669–2680.
Arora, C., S. Soni, S. Sahu, J. Mittal, P. Kumar, and P. K. Bajpai. 2019. “Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste.” J. Mol. Liq. 284 (Jun): 343–352. https://doi.org/10.1016/j.molliq.2019.04.012.
Aslam, M., M. A. Kalyar, and Z. A. Raza. 2016. “Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets.” Mater. Res. Express 3 (10): 105036. https://doi.org/10.1088/2053-1591/3/10/105036.
Banerjee, A., P. S. Kumar, and A. K. Shukla. 2013. “Influence of binder solvent on carbon-layer structure in electrical-double-layer capacitors.” J. Chem. Sci. 125 (5): 1177–1183. https://doi.org/10.1007/s12039-013-0494-7.
Becerril, H. A., J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen. 2008. “Evaluation of solution-processed reduced graphene oxide films as transparent conductors.” ACS Nano 2 (3): 463–470. https://doi.org/10.1021/nn700375n.
Berger, C., et al. 2006. “Electronic confinement and coherence in patterned epitaxial grapheme.” Science 312 (5777): 1191–1196. https://doi.org/10.1126/science.1125925.
Blair, J. W., and G. W. Murphy. 1960. “Saline water conversion.” Adv. Chem. Ser. 27 (20): 206–208.
Bourlinos, A. B., D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány. 2003. “Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids.” Langmuir 19 (15): 6050–6055. https://doi.org/10.1021/la026525h.
Cao, N., and Y. Zhang. 2015. “Study of reduced graphene oxide preparation by Hummers’ method and related characterization.” J. Nanomater. 2015.
Chen, W., L. Yan, and P. R. Bangal. 2010. “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds.” J. Phys. Chem. C 114 (47): 19885–19890. https://doi.org/10.1021/jp107131v.
Choi, J. Y., and J. H. Choi. 2010. “A carbon electrode fabricated using a poly (vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder.” J. Ind. Eng. Chem. 16 (3): 401–405. https://doi.org/10.1016/j.jiec.2009.08.005.
Dai, K., L. Shi, J. Fang, D. Zhang, and B. Yu. 2005. “NaCl adsorption in multi-walled carbon nanotubes.” Mater. Lett. 59 (16): 1989–1992. https://doi.org/10.1016/j.matlet.2005.01.042.
Díaz, P., Z. González, M. Granda, R. Menéndez, R. Santamaría, and C. Blanco. 2014. “Evaluating capacitive deionization for water desalination by direct determination of chloride ions.” Desalination 344 (Jul): 396–401. https://doi.org/10.1016/j.desal.2014.04.013.
Farmer, J. C., D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco. 1995. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water. Livermore, CA: Lawrence Livermore National Lab.
Gogtay, N. J. 2010. “Principles of sample size calculation.” Indian J. Ophthalmol. 58 (6): 517. https://doi.org/10.4103/0301-4738.71692.
Guyes, E. N., A. N. Shocron, Y. Chen, C. E. Diesendruck, and M. E. Suss. 2021. “Long-lasting, monovalent-selective capacitive deionization electrodes.” NPJ Clean Water 4 (1): 1–11. https://doi.org/10.1038/s41545-021-00109-2.
Hidayah, N. M. S., W. W. Liu, C. W. Lai, N. Z. Noriman, C. S. Khe, U. Hashim, and H. C. Lee. 2017. “Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization.” In Proc., Int. Conf. of Global Network for Innovative Technology and AWAM Int. Conf. in Civil Engineering. Penang, Malaysia: Universiti Sains Malaysia.
Huang, Z. H., M. Wang, L. Wang, and F. Kang. 2012. “Relation between the charge efficiency of activated carbon fiber and its desalination performance.” Langmuir 28 (11): 5079–5084. https://doi.org/10.1021/la204690s.
Hummers, W. S., Jr., and R. E. Offeman. 1958. “Preparation of graphitic oxide.” J. Am. Chem. Soc. 80 (6): 1339. https://doi.org/10.1021/ja01539a017.
Jurczuk, K., A. Galeski, M. Mackey, A. Hiltner, and E. Baer. 2015. “Orientation of PVDF α and γ crystals in nanolayered films.” Colloid Polym. Sci. 293 (4): 1289–1297. https://doi.org/10.1007/s00396-015-3542-7.
Kinoshita, K. 1988. Carbon: Electrochemical and physicochemical properties. New York: Wiley.
Lai, Q., S. Zhu, X. Luo, M. Zou, and S. Huang. 2012. “Ultraviolet-visible spectroscopy of graphene oxides.” AIP Adv. 2 (3): 032146. https://doi.org/10.1063/1.4747817.
Largeot, C., C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, and P. Simon. 2008. “Relation between the ion size and pore size for an electric double-layer capacitor.” J. Am. Chem. Soc. 130 (9): 2730–2731. https://doi.org/10.1021/ja7106178.
Lee, J., S. Kim, N. Kim, C. Kim, and J. Yoon. 2020. “Enhancing the desalination performance of capacitive deionization using a layered double hydroxide coated activated carbon electrode.” Appl. Sci. 10 (1): 403. https://doi.org/10.3390/app10010403.
Lee, S., J. S. Park, and T. R. Lee. 2008. “The wettability of fluoropolymer surfaces: Influence of surface dipoles.” Langmuir 24 (9): 4817–4826. https://doi.org/10.1021/la700902h.
Lenz, M., R. Wagner, E. Hack, and M. Franzreb. 2020. “Object-oriented modeling of a capacitive deionization process.” Front. Chem. Eng. 2 (3): 1–14.
Li, H., Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun. 2008. “Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.” Water Res. 42 (20): 4923–4928. https://doi.org/10.1016/j.watres.2008.09.026.
Li, Z., B. Song, Z. Wu, Z. Lin, Y. Yao, K. S. Moon, and C. P. Wong. 2015. “3D porous graphene with ultrahigh surface area for microscale capacitive deionization.” Nano Energy 11 (Jan): 711–718. https://doi.org/10.1016/j.nanoen.2014.11.018.
Li, Z. F., H. Zhang, Q. Liu, L. Sun, L. Stanciu, and J. Xie. 2013. “Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors.” ACS Appl. Mater. Interfaces 5 (7): 2685–2691. https://doi.org/10.1021/am4001634.
Liang, X., Z. Fu, and S. Y. Chou. 2007. “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer.” Nano Lett. 7 (12): 3840–3844. https://doi.org/10.1021/nl072566s.
Lingamdinne, L. P., J. R. Koduru, and R. R. Karri. 2019. “A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification.” J. Environ. Manage. 231 (Feb): 622–634. https://doi.org/10.1016/j.jenvman.2018.10.063.
Marshall, J. E., A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C. E. Dancer, C. R. McElroy, E. Kendrick, and V. Goodship. 2021. “On the solubility and stability of polyvinylidene fluoride.” Polymers 13 (9): 1354. https://doi.org/10.3390/polym13091354.
Mohan, V. B., L. Jakisch, K. Jayaraman, and D. Bhattacharyya. 2018. “Role of chemical functional groups on thermal and electrical properties of various graphene oxide derivatives: A comparative x-ray photoelectron spectroscopy analysis.” Mater. Res. Express 5 (3): 035604. https://doi.org/10.1088/2053-1591/aab316.
Nath, B., and T. F. Barbhuiya. 2014. “Studies on the density and surface area of nanoparticles from Camellia sinensis: A natural source.” J. Chem. Pharm. Res. 6 (11): 608–610.
Ntakirutimana, S., W. Tan, M. A. Anderson, and Y. Wang. 2020. “Editors’ Choice—Review—Activated carbon electrode design: Engineering tradeoff with respect to capacitive deionization performance.” J. Electrochem. Soc. 167 (14): 143501. https://doi.org/10.1149/1945-7111/abbfd7.
Pan, S. Y., A. Z. Haddad, A. Kumar, and S. W. Wang. 2020. “Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus.” Water Res. 183 (Sep): 116064. https://doi.org/10.1016/j.watres.2020.116064.
Pandolfo, A. G., G. J. Wilson, T. D. Huynh, and A. F. Hollenkamp. 2010. “The influence of conductive additives and inter-particle voids in carbon EDLC electrodes.” Fuel Cells 10 (5): 856–864. https://doi.org/10.1002/fuce.201000027.
Park, B. H., Y. J. Kim, J. S. Park, and J. Choi. 2011. “Capacitive deionization using a carbon electrode prepared with water-soluble poly (vinyl alcohol) binder.” J. Ind. Eng. Chem. 17 (4): 717–722. https://doi.org/10.1016/j.jiec.2011.05.015.
Pauline, S., and G. Venkatesan. 2019. “Influence of solvent and its concentration on binding graphene with substrate in electric double layer capacitance.” Desalin. Water Treat. 145: 134–142. https://doi.org/10.5004/dwt.2019.23707.
Qin, M., A. Deshmukh, R. Epsztein, S. K. Patel, O. M. Owoseni, W. S. Walker, and M. Elimelech. 2019. “Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis.” Desalination 455 (Apr): 100–114. https://doi.org/10.1016/j.desal.2019.01.003.
Ramachandran, A., D. I. Oyarzun, S. A. Hawks, P. G. Campbell, M. Stadermann, and J. G. Santiago. 2019. “Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis.” Desalination 461: 30–36.
Selvam, M., K. Sakthipandi, R. Suriyaprabha, K. Saminathan, and V. Rajendran. 2013. “Synthesis and characterization of electrochemically-reduced grapheme.” Bull. Mater. Sci. 36 (7): 1315–1321. https://doi.org/10.1007/s12034-013-0581-x.
Shi, W., H. Li, X. Cao, Z. Y. Leong, J. Zhang, T. Chen, H. Zhang, and H. Y. Yang. 2016. “Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores.” Sci. Rep. 6 (1): 1–9.
Si, Y., and E. T. Samulski. 2008. “Exfoliated graphene separated by platinum nanoparticles.” Chem. Mater. 20 (21): 6792–6797. https://doi.org/10.1021/cm801356a.
Sohail, M., M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, and M. Arif. 2017. “Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications.” Mod. Electron. Mater. 3 (3): 110–116. https://doi.org/10.1016/j.moem.2017.07.002.
Song, J., X. Wang, and C. T. Chang. 2014. “Preparation and characterization of graphene oxide.” J. Nanomater. 2014. https://doi.org/10.1155/2014/734614.
Soni, S., P. K. Bajpai, D. Bharti, J. Mittal, and C. Arora. 2020. “Removal of crystal violet from aqueous solution using iron based metal organic framework.” Desalin. Water Treat. 205: 386–399. https://doi.org/10.5004/dwt.2020.26387.
Sreekumar, R., P. M. Ratheesh Kumar, C. Sudha Kartha, K. P. Vijayakumar, V. Kabiraj, S. A. Khan, D. K. Avasthi, Y. Kashiwaba, and T. Abe. 2006. “Swift heavy ion-induced interface mixing in In/Sb.” Semi. Sci. Technol. 21: 382–386.
Srivastava, S. K., A. K. Shukla, V. D. Vankar, and V. Kumar. 2005. “Growth, structure and field emission characteristics of petal like carbon nano-structured thin films.” Thin Solid Films 492 (1–2): 124–130. https://doi.org/10.1016/j.tsf.2005.07.283.
Su, C. Y., A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li. 2011. “High-quality thin graphene films from fast electrochemical exfoliation.” ACS Nano 5 (3): 2332–2339. https://doi.org/10.1021/nn200025p.
Sui, Z., Q. Meng, X. Zhang, R. Ma, and B. Cao. 2012. “Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification.” J. Mater. Chem. 22 (18): 8767–8771. https://doi.org/10.1039/c2jm00055e.
Suss, M. E., S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser. 2015. “Water desalination via capacitive deionization: What is it and what can we expect from it?” Energy Environ. Sci. 8 (8): 2296–2319. https://doi.org/10.1039/C5EE00519A.
Sutter, P. W., J. I. Flege, and E. A. Sutter. 2008. “Epitaxial graphene on ruthenium.” Nat. Mater. 7 (5): 406–411. https://doi.org/10.1038/nmat2166.
Tabish, T. A., F. A. Memon, D. E. Gomez, D. W. Horsell, and S. Zhang. 2018. “A facile synthesis of porous graphene for efficient water and wastewater treatment.” Sci. Rep. 8 (1): 1–14. https://doi.org/10.1038/s41598-018-19978-8.
Thamilselvan, A., A. S. Nesaraj, and M. Noel. 2016. “Review on carbon-based electrode materials for application in capacitive deionization process.” Int. J. Environ. Sci. Technol. 13 (12): 2961–2976. https://doi.org/10.1007/s13762-016-1061-9.
Wang, D., Z. Wu, W. Ren, J. Zhao, G. Zhou, F. Li, and H. M. Cheng. 2010. “Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors.” Adv. Mater. Funct. 20: 3595–3600.
Wang, G., B. Qian, Q. Dong, J. Yang, Z. Zhao, and J. Qiu. 2013. “Highly mesoporous activated carbon electrode for capacitive deionization.” Sep. Purif. Technol. 103 (Jan): 216–221. https://doi.org/10.1016/j.seppur.2012.10.041.
Wang, L., J. E. Dykstra, and S. Lin. 2019. “Energy efficiency of capacitive deionization.” Environ. Sci. Technol. 53 (7): 3366–3378. https://doi.org/10.1021/acs.est.8b04858.
Wang, L., M. Wang, Z. H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu. 2011. “Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes.” J. Mater. Chem. 21 (45): 18295–18299. https://doi.org/10.1039/c1jm13105b.
Wang, Z., B. Dou, L. Zheng, G. Zhang, Z. Liu, and Z. Hao. 2012. “Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material.” Desalination 299 (Aug): 96–102. https://doi.org/10.1016/j.desal.2012.05.028.
Wei, W., and X. Qu. 2012. “Extraordinary physical properties of functionalized grapheme.” Small 8 (14): 2138–2151. https://doi.org/10.1002/smll.201200104.
Xiong, C., B. Li, X. Lin, H. Liu, Y. Xu, J. Mao, C. Duan, T. Li, and Y. Ni. 2019. “The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor.” Composites, Part B 165 (May): 10–46. https://doi.org/10.1016/j.compositesb.2018.11.085.
Xu, B., X. Xu, H. Gao, F. He, Y. Zhu, L. Qian, W. Han, Y. Zhang, and W. Wei. 2020. “Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization.” Sep. Purif. Technol. 250 (Nov): 117243. https://doi.org/10.1016/j.seppur.2020.117243.
Xu, X., L. Pan, Y. Liu, T. Lu, and Z. Sun. 2015. “Enhanced capacitive deionization performance of graphene by nitrogen doping.” J. Colloid Interface Sci. 445 (May): 143–150. https://doi.org/10.1016/j.jcis.2015.01.003.
Yuan, K., et al. 2015. “Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors.” Adv. Mater. 27 (42): 6714–6721. https://doi.org/10.1002/adma.201503390.
Zhang, D., T. Yan, L. Shi, Z. Peng, X. Wen, and J. Zhang. 2012a. “Enhanced capacitive deionization performance of graphene/carbon nanotube composites.” J. Mater. Chem. 22 (29): 14696–14704. https://doi.org/10.1039/c2jm31393f.
Zhang, Y. J., J. Guo, and T. Li. 2012b. “Research progress on binder of activated carbon electrode.” In Vol. 549 of Advanced materials research, 780–784. Bäch, Switzerland: Trans Tech Publications.
Zhao, R., P. M. Biesheuvel, H. Miedema, H. Bruning, and A. Van der Wal. 2010. “Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization.” J. Phys. Chem. Lett. 1 (1): 205–210. https://doi.org/10.1021/jz900154h.
Zhou, X., M. Wang, J. Lian, and Y. Lian. 2014. “Supercapacitors based on high-surface-area grapheme.” Sci. China Technol. Sci. 57 (2): 278–283. https://doi.org/10.1007/s11431-014-5462-z.
Zhou, X., X. Zhang, Y. Wang, and Z. Wu. 2021. “2D graphene-TiO2 composite and its photocatalytic application in water pollutants.” Front. Energy Res. 8: 612512. https://doi.org/10.3389/fenrg.2020.612512.
Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff. 2010. “Graphene and graphene oxide: Synthesis, properties, and applications.” Adv. Mater. 22 (35): 3906–3924. https://doi.org/10.1002/adma.201001068.
Zhu, Z., S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, and G. M. Haarberg. 2016. “Effects of various binders on supercapacitor performances.” Int. J. Electrochem. Sci. 11 (10): 8270–8279. https://doi.org/10.20964/2016.10.04.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 7July 2022

History

Received: Jul 2, 2021
Accepted: Jan 19, 2022
Published online: Apr 29, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 29, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, University College of Engineering Tiruchirappalli, Anna Univ., Tiruchirappalli, Tamil Nadu 624 024, India (corresponding author). ORCID: https://orcid.org/0000-0001-5159-4265. Email: [email protected]
S. Pauline, M.ASCE
Assistant Professor, Dept. of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu 630 003, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share