Technical Papers
Mar 14, 2022

An Extraction Method to Quantify the Fraction of Extracellular and Intracellular Antibiotic Resistance Genes in Aquatic Environments

Publication: Journal of Environmental Engineering
Volume 148, Issue 5

Abstract

As the abundance and diversity of antibiotic resistance genes increases in the environment, there is a concurrent increase in the threat to public and ecosystem health. Extracellular antibiotic resistance genes (eARGs) are cell-free DNA that can promote the development of antibiotic resistance via transformation by competent bacterial cells. Despite this role, eARGs have not been well characterized in different environmental waters. Their small size and low concentrations in some aquatic environments render them difficult to extract. The aim of this research was to modify an eARG extraction method to determine the abundance of both eARGs and intracellular ARGs (iARGs) in the same water sample. The modified method, consisting of sequential filtration to separate iARGs from eARGs, adsorption-elution with aluminum hydroxide–coated silica gel, and precipitation, extracted eARGs and iARGs with a recovery rate between 79.5% and 99.0%. The novel method was then utilized for the extraction of the extracellular and intracellular fractions of four ARGs, one mobile genetic element, and the 16S rRNA in tap water, river surface water, lake surface water, stormwater, and wastewater effluent. This is the first instance in which the extracellular and intracellular fractions of the 16S rRNA, intI1, blaTEM, ermF, sul1, and tetC genes in stormwater and lake surface water are reported. In addition, this modified method enabled the quantification of the extracellular concentration of the erythromycin resistance gene ermF in environmental waters for the first time; the gene’s abundance ranged from 1.26×105 to 8.82×106 gene copies/L across the aquatic waters sampled. The extracellular abundance of the mobile genetic element intI1, moreover, was quantified in tap water (7.00×104 gene copies/L) for the first time. The validation and application of this method to diverse environmental matrices should allow for further research to be conducted to better understand the role of eARGs in the spread of antibiotic resistance.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated or used during the study appear in the published article.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 2041851. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. This research was also supported by an Opus College of Engineering Seed Grant funded by the GHR Foundation.

References

Barnes, M. A., C. R. Turner, C. L. Jerde, M. A. Renshaw, W. L. Chadderton, and D. M. Lodge. 2014. “Environmental conditions influence eDNA persistence in aquatic systems.” Environ. Sci. Technol. 48 (3): 1819–1827. https://doi.org/10.1021/es404734p.
Bustin, S. A., et al. 2009. “The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments.” Clin. Chem. 55 (4): 611–622. https://doi.org/10.1373/clinchem.2008.112797.
Calderón-Franco, D., M. C. M. Van Loosdrecht, T. Abeel, and D. G. Weissbrodt. 2021. “Free-floating extracellular DNA: Systematic profiling of mobile genetic elements and antibiotic resistance from wastewater.” Water Res. 189 (Feb): 116592. https://doi.org/10.1016/j.watres.2020.116592.
Chancey, S. T., S. Agrawal, M. R. Schroeder, M. M. Farley, H. Tettelin, and D. S. Stephens. 2015. “Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae.” Front. Microbiol. 6 (Feb): 1–14. https://doi.org/10.3389/fmicb.2015.00026.
Chen, L., Y. Xu, X. Dong, and C. Shen. 2020. “Removal of intracellular and extracellular antibiotic resistance genes in municipal wastewater effluent by electrocoagulation.” Environ. Eng. Sci. 37 (12): 783–789. https://doi.org/10.1089/ees.2020.0189.
Corinaldesi, C., R. Danovaro, and A. Dell’Anno. 2005. “Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments.” Appl. Environ. Microbiol. 71 (1): 46–50. https://doi.org/10.1128/AEM.71.1.46-50.2005.
D’Costa, V. M., et al. 2011. “Antibiotic resistance is ancient.” Nature 477 (7365): 457–461. https://doi.org/10.1038/nature10388.
Deprez, L., P. Corbisier, A. M. Kortekaas, S. Mazoua, R. Beaz Hidalgo, S. Trapmann, and H. Emons. 2016. “Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material.” Biomol. Detect. Quantif. 9: 29–39. https://doi.org/10.1016/j.bdq.2016.08.002.
Domingues, S., K. Harms, W. F. Fricke, P. J. Johnsen, G. J. da Silva, and K. M. Nielsen. 2012. “Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species.” PLoS Pathog. 8 (8): e1002837. https://doi.org/10.1371/journal.ppat.1002837.
Dong, P., H. Wang, T. Fang, Y. Wang, and Q. Ye. 2019. “Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG.” Environ. Int. 125 (Apr): 90–96. https://doi.org/10.1016/j.envint.2019.01.050.
Finley, R. L., P. Collignon, D. G. J. Larsson, S. A. Mcewen, X. Li, W. H. Gaze, R. Reid-smith, M. Timinouni, D. W. Graham, and E. Topp. 2013. “The scourge of antibiotic resistance: The important role of the environment.” Clin. Infect. Dis. 57 (5): 704–710. https://doi.org/10.1093/cid/cit355.
Hao, H., et al. 2019. “Profiling of intracellular and extracellular antibiotic resistance genes in tap water.” J. Hazard. Mater. 365 (Mar): 340–345. https://doi.org/10.1016/j.jhazmat.2018.11.004.
He, T., L. Jin, J. Xie, S. Yue, P. Fu, and X. Li. 2021. “Intracellular and extracellular antibiotic resistance genes in airborne PM2.5 for respiratory exposure in urban areas.” Environ. Sci. Technol. Lett. 8 (2): 128–134. https://doi.org/10.1021/acs.estlett.0c00974.
Huggett, J. F., et al. 2013. “The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments.” Clin. Chem. 59 (6): 892–902. https://doi.org/10.1373/clinchem.2013.206375.
Jakubovics, N. S., R. C. Shields, N. Rajarajan, and J. G. Burgess. 2013. “Life after death: The critical role of extracellular DNA in microbial biofilms.” Lett. Appl. Microbiol. 57 (6): 467–475. https://doi.org/10.1111/lam.12134.
Jin, M., L. Liu, D. W. Dong, Y. W. Liu, J. Yin, Z. Y. H. Wang, Z. Q. Z. Shen, D. S. H. Li, and J. G. J. Li. 2020. “Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation.” ISME J 14 (7): 1847–1856. https://doi.org/10.1038/s41396-020-0656-9.
Johnsborg, O., V. Eldholm, and L. S. Håvarstein. 2007. “Natural genetic transformation: Prevalence, mechanisms and function.” Res. Microbiol. 158 (10): 767–778. https://doi.org/10.1016/j.resmic.2007.09.004.
Kaboosi, H., M. R. Razavi, and S. Noohi. 2010. “Efficiency of filtration technique for isolation of leptospires from surface waters: Role of different membranes with different pore size and materials.” Afr. J. Microbiol. Res. 4 (9): 671–676.
Kappell, A. D., K. R. Harrison, and P. J. McNamara. 2019. “Effects of zinc orthophosphate on the antibiotic resistant bacterial community of a source water used for drinking water treatment.” Environ. Sci.: Water Res. Technol. 5 (9): 1523–1534. https://doi.org/10.1039/C9EW00374F.
Kimbell, L. K., J. Huo, E. L. Lamartina, A. D. Kappell, Y. Wang, J. Newton, and P. J. McNamara. 2021. “Cast iron drinking water pipe biofilms support diverse microbial communities containing antibiotic resistance genes, metal resistance genes, and class 1 integrons.” Environ. Sci. Water Res. Technol. 7 (3): 584–598. https://doi.org/10.1039/D0EW01059F.
Košir, A. B., C. Divieto, J. Pavšič, S. Pavarelli, D. Dobnik, T. Dreo, R. Bellotti, M. P. Sassi, and J. Žel. 2017. “Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR.” Anal. Bioanal. Chem. 409 (28): 6689–6697. https://doi.org/10.1007/s00216-017-0625-y.
Kumar, A., and D. Pal. 2018. “Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges.” J. Environ. Chem. Eng. 6 (1): 52–58. https://doi.org/10.1016/j.jece.2017.11.059.
LaPara, T. M., T. R. Burch, P. J. McNamara, D. T. Tan, M. Yan, and J. J. Eichmiller. 2011. “Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor.” Environ. Sci. Technol. 45 (22): 9543–9549. https://doi.org/10.1021/es202775r.
Lee, W. H., D. G. Wahman, P. L. Bishop, and J. G. Pressman. 2011. “Free chlorine and monochloramine application to nitrifying biofilm: Comparison of biofilm penetration, activity, and viability.” Environ. Sci. Technol. 45 (4): 1412–1419. https://doi.org/10.1021/es1035305.
Levy, S. B. 1989. Gene transfer in the environment. New York: McGraw-Hill.
Levy-booth, D. J., R. G. Campbell, R. H. Gulden, M. M. Hart, R. Powell, J. N. Klironomos, K. P. Pauls, C. J. Swanton, J. T. Trevors, and K. E. Dunfield. 2007. “Cycling of extracellular DNA in the soil environment.” Soil Biol. Biochem. 39 (12): 2977–2991. https://doi.org/10.1016/j.soilbio.2007.06.020.
Li, D., S. Zeng, M. He, and A. Z. Gu. 2016. “Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena.” Environ. Sci. Technol. 50 (6): 3193–3201. https://doi.org/10.1021/acs.est.5b05113.
Liang, Z., and A. Keeley. 2013. “Filtration recovery of extracellular DNA from environmental water samples.” Environ. Sci. Technol. 47 (16): 9324–9331. https://doi.org/10.1021/es401342b.
Liu, M., A. Hata, H. Katayama, and I. Kasuga. 2020. “Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river.” Environ. Pollut. 260 (May): 114062. https://doi.org/10.1016/j.envpol.2020.114062.
Liu, S., et al. 2018. “Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant.” Water Res. 136 (Jun): 131–136. https://doi.org/10.1016/j.watres.2018.02.036.
Lou, E. G., M. Harb, A. L. Smith, and L. B. Stadler. 2020. “Livestock manure improved antibiotic resistance gene removal during co-treatment of domestic wastewater in an anaerobic membrane bioreactor.” Environ. Sci. Water Res. Technol. 6 (10): 2832–2842. https://doi.org/10.1039/d0ew00387e.
Lu, J., Y. Wang, S. Zhang, P. Bond, Z. Yuan, and J. Guo. 2020. “Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation.” Sci. Total Environ. 713 (Apr): 136621. https://doi.org/10.1016/j.scitotenv.2020.136621.
Lu, N., J. L. Zilles, and T. H. Nguyen. 2010. “Adsorption of extracellular chromosomal DNA and its effects on natural transformation of Azotobacter Vinelandii.” Appl. Environ. Microbiol. 76 (13): 4179–4184. https://doi.org/10.1128/AEM.00193-10.
Mantilla-Calderon, D., M. J. Plewa, G. Michoud, S. Fodelianakis, D. Daffonchio, and P. Y. Hong. 2019. “Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1.” Environ. Sci. Technol. 53 (11): 6520–6528. https://doi.org/10.1021/acs.est.9b00692.
Mao, D., Y. Luo, J. Mathieu, Q. Wang, L. Feng, Q. Mu, C. Feng, and P. J. J. Alvarez. 2014. “Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation.” Environ. Sci. Technol. 48 (1): 71–78. https://doi.org/10.1021/es404280v.
MMSD (Milwaukee Metropolitan Sewerage District). 2020. Milwaukee weather center: MMSD rain gauge data. Milwaukee, WI: MMSD.
Nagler, M., H. Insam, G. Pietramellara, and J. Ascher-Jenull. 2018. “Extracellular DNA in natural environments: Features, relevance and applications.” Appl. Microbiol. Biotechnol. 102 (15): 6343–6356. https://doi.org/10.1007/s00253-018-9120-4.
Nielsen, K. M., P. J. Johnsen, D. Bensasson, and D. Daffonchio. 2007. “Release and persistence of extracellular DNA in the environment.” Environ. Biosaf. Res. 6 (1–2): 37–53. https://doi.org/10.1051/ebr:2007031.
Pietramellara, G., J. Ascher, F. Borgogni, M. T. Ceccherini, G. Guerri, and P. Nannipieri. 2009. “Extracellular DNA in soil and sediment: Fate and ecological relevance.” Biol. Fertil. Soils 45 (3): 219–235. https://doi.org/10.1007/s00374-008-0345-8.
Potter, B. B., and J. Wimsastt. 2009. “Method 415.3, Rev. 1.2: Determination of total organic carbon and specific UV absorbance at 254 nm in source water and drinking water.” Accessed February 23, 2022. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=214406.
Pruden, A., et al. 2018. “An environmental science and engineering framework for combating antimicrobial resistance.” Environ. Eng. Sci. 35 (10): 1005–1011. https://doi.org/10.1089/ees.2017.0520.
Reynolds, L. J., L. Sala-Comorera, N. A. Martin, T. M. Nolan, J. H. Stephens, A. Gitto, G. M. P. O’Hare, J. J. O’Sullivan, and W. G. Meijer. 2020. “Correlation between antimicrobial resistance and faecal contamination in small urban streams and bathing waters.” Sci. Total Environ. 739 (Oct): 140242. https://doi.org/10.1016/j.scitotenv.2020.140242.
Sakcham, B., A. Kumar, and B. Cao. 2019. “Extracellular DNA in monochloraminated drinking water and its influence on DNA-based profiling of a microbial community.” Environ. Sci. Technol. Lett. 6 (5): 306–312. https://doi.org/10.1021/acs.estlett.9b00185.
Sui, Q., Y. Chen, D. Yu, T. Wang, Y. Hai, J. Zhang, M. Chen, and Y. Wei. 2019. “Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes.” Environ. Int. 133 (Dec): 105183. https://doi.org/10.1016/j.envint.2019.105183.
Surette, M. D., and G. D. Wright. 2017. “Lessons from the environmental antibiotic resistome.” Annu. Rev. Microbiol. 71 (Sep): 309–329. https://doi.org/10.1146/annurev-micro-090816-093420.
Taylor, S. C., G. Laperriere, and H. Germain. 2017. “Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data.” Sci. Rep. 7 (1): 1–8. https://doi.org/10.1038/s41598-017-02217-x.
Thomas, C. M., and K. M. Nielsen. 2005. “Mechanisms of, and barriers to, horizontal gene transfer between bacteria.” Nat. Rev. Microbiol. 3 (9): 711–721. https://doi.org/10.1038/nrmicro1234.
Torti, A., M. A. Lever, and B. B. Jørgensen. 2015. “Origin, dynamics, and implications of extracellular DNA pools in marine sediments.” Mar. Geonomics 24 (Dec): 185–196. https://doi.org/10.1016/j.margen.2015.08.007.
USEPA. 1993. “Method 365.1, Revision 2.0: Determination of phosphorus by semi-automated colorimetry.” Accessed February 23, 2022. https://www.epa.gov/sites/production/files/2015-08/documents/method_365-1_1993.pdf.
Von Wintersdorff, C. J. H., J. Penders, J. M. Van Niekerk, N. D. Mills, S. Majumder, L. B. Van Alphen, P. H. M. Savelkoul, and P. F. G. Wolffs. 2016. “Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer.” Front. Microbiol. 7 (Feb): 1–10. https://doi.org/10.3389/fmicb.2016.00173.
Vuillemin, A., F. Horn, M. Alawi, C. Henny, D. Wagner, S. A. Crowe, and J. Kallmeyer. 2017. “Preservation and significance of extracellular DNA in ferruginous sediments from Lake Towuti, Indonesia.” Front. Microbiol. 8 (Jul): 1–15. https://doi.org/10.3389/fmicb.2017.01440.
Wang, D. N., L. Liu, Z. G. Qiu, Z. Q. Shen, X. Guo, D. Yang, J. Li, W. L. Liu, M. Jin, and J. W. Li. 2016. “A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water.” Water Res. 92 (Apr): 188–198. https://doi.org/10.1016/j.watres.2016.01.035.
Yuan, Q. B., Y. M. Huang, W. B. Wu, P. Zuo, N. Hu, Y. Z. Zhou, and P. J. J. Alvarez. 2019. “Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads.” Environ. Int. 131 (Oct): 104986. https://doi.org/10.1016/j.envint.2019.104986.
Zarei-Baygi, A., and A. L. Smith. 2021. “Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies.” Bioresour. Technol. 319 (Jan): 124181. https://doi.org/10.1016/j.biortech.2020.124181.
Zhang, M., S. Chen, X. Yu, P. Vikesland, and A. Pruden. 2019. “Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination.” Front. Environ. Sci. Eng. 13 (3): 1–12. https://doi.org/10.1007/s11783-019-1124-5.
Zhang, Y., A. Li, T. Dai, F. Li, H. Xie, L. Chen, and D. Wen. 2018. “Cell-free DNA: A neglected source for antibiotic resistance genes spreading from WWTPs.” Environ. Sci. Technol. 52 (1): 248–257. https://doi.org/10.1021/acs.est.7b04283.
Zhang, Y., D. D. Snow, D. Parker, Z. Zhou, and X. Li. 2013. “Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures.” Environ. Sci. Technol. 47 (18): 10206–10213. https://doi.org/10.1021/es401964s.
Zhao, Z., K. Zhang, N. Wu, W. Li, W. Xu, Y. Zhang, and Z. Niu. 2020. “Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: A high-throughput analysis in Haihe Estuary in China.” Environ. Int. 135 (Feb): 105385. https://doi.org/10.1016/j.envint.2019.105385.
Zhou, S., Y. Zhu, Y. Yan, W. Wang, and Y. Wang. 2019. “Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome.” Water Res. 161 (Sep): 610–620. https://doi.org/10.1016/j.watres.2019.06.048.
Zhu, B. 2006. “Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR).” Water Res. 40 (17): 3231–3238. https://doi.org/10.1016/j.watres.2006.06.040.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 5May 2022

History

Received: Sep 8, 2021
Accepted: Dec 21, 2021
Published online: Mar 14, 2022
Published in print: May 1, 2022
Discussion open until: Aug 14, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Kassidy O’Malley
Dept. of Civil, Construction, and Environmental Engineering, Marquette Univ., Milwaukee, WI 53233.
Walter McDonald, A.M.ASCE https://orcid.org/0000-0002-9217-7908
Assistant Professor, Dept. of Civil, Construction, and Environmental Engineering, Marquette Univ., Milwaukee, WI 53233. ORCID: https://orcid.org/0000-0002-9217-7908
Patrick McNamara [email protected]
Assistant Professor, Dept. of Civil, Construction, and Environmental Engineering, Marquette Univ., 1637 W Wisconsin Ave., Milwaukee, WI 53233 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • The Origin, Function, Distribution, Quantification, and Research Advances of Extracellular DNA, International Journal of Molecular Sciences, 10.3390/ijms232213690, 23, 22, (13690), (2022).
  • Seasonal and spatial patterns differ between intracellular and extracellular antibiotic resistance genes in urban stormwater runoff, Environmental Science: Advances, 10.1039/D2VA00065B, 1, 3, (380-390), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share