Technical Papers
Feb 9, 2022

Methane Oxidation and Microbial Community Dynamics in Activated Biochar-Amended Landfill Soil Cover

Publication: Journal of Environmental Engineering
Volume 148, Issue 4

Abstract

In recent years, biochar-amended soil cover has shown promise for enhancing microbial methane (CH4) oxidation and mitigate fugitive CH4 emissions at municipal solid waste landfills. However, addition of biochar in landfill cover soil has an initial lag phase due to microbial acclimation and colonization, resulting in lower CH4 oxidation rates relative to CH4-exposed landfill cover soil. Therefore, this study explored amendment of landfill cover soil with biochar infused with methane-oxidizing bacterial (MOB) consortium (termed activated biochar) to reduce acclimation time and enhance the CH4 oxidation activity. Experimental long-term incubation tests were performed on soil columns containing one of four different biocovers: soil control (CS), soil with 10% by weight of biochar (B10), soil with 5% MOB-activated biochar (AB5), and soil with 10% MOB-activated biochar (AB10), exposed to continuous flow of simulated landfill gas (LFG). The AB10 soil column had a reduced lag phase with notable CH4 oxidation efficiency (ranging from 13% to 50%) during the initial exposure phase compared with all other biocover columns (0.4%–36%). In addition, the activated biochar–amended soil biocovers had higher CH4 oxidation rates (6974.3  μgCH4g1day1) than the nonactivated biochar–amended soil (42  μgCH4g1day1) and soil control (36  μgCH4g1day1). The activated biochar–amended columns had higher relative abundances of Type II methanotrophs, mainly Methylocystis and Methylosinus (relative abundance 10%) than did nonactivated biochar–amended soil and control columns (relative abundance 3.0%–3.6%). A positive correlation was observed between CH4 oxidation rate and the ratio of Type II/Type I abundance (R2=0.84, p<0.01), further suggesting an important role for the biochar activation in the biological CH4 mitigation process. Overall, biochar activation appears to be a promising mechanism to reduce microbial lag phase and enhance CH4 oxidation rates in biochar-amended landfill cover soils.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated during the study appear in this article.

Acknowledgments

This research is a part of comprehensive project Innovative Biochar-Slag-Soil Cover System for Zero Emissions at Landfills funded by the National Science Foundation (CMMI# 1724773), which is gratefully acknowledged. The authors are grateful to the Genomic Research Core in the Research Resources Center at the University of Illinois at Chicago for microbial analysis.

References

Amaral, J. A., and R. Knowles. 1995. “Growth of methanotrophs in methane and oxygen counter gradients.” FEMS Microbiol. Lett. 126 (3): 215–220. https://doi.org/10.1111/j.1574-6968.1995.tb07421.x.
Apprill, A., S. McNally, R. Parsons, and L. Weber. 2015. “Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton.” Aquat. Microb. Ecol. 75 (2): 129–137. https://doi.org/10.3354/ame01753.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854-14. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084-16a. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (Unified soil classification system). ASTM D2487-17e1. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for saturated density, moisture-holding capacity, and porosity of saturated peat materials. ASTM D2980-17e1. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17e1. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M-17. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard test methods for permeability of granular soils (constant head). ASTM D2434-19. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test methods for pH of soils. ASTM D4972-19. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test methods for determining the water (moisture) content, ash content, and organic material of peat and other organic soils. ASTM D2974-20e1. West Conshohocken, PA: ASTM.
Barlaz, M. A., R. B. Green, J. P. Chanton, C. D. Goldsmith, and G. R. Hater. 2004. “Evaluation of a biologically active cover for mitigation of landfill gas emissions.” Environ. Sci. Technol. 38 (18): 4891–4899. https://doi.org/10.1021/es049605b.
Boeckx, P., and O. Van Cleemput. 1996. “Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen-turnover.” J. Environ. Qual. 25 (1): 178–183. https://doi.org/10.2134/jeq1996.00472425002500010023x.
Bogner, J., K. Spokas, E. Burton, R. Sweeney, and V. Corona. 1995. “Landfills as atmospheric methane sources and sinks.” Chemosphere 31 (9): 4119–4130. https://doi.org/10.1016/0045-6535(95)80012-A.
Bogner, J. E., K. A. Spokas, and J. P. Chanton. 2011. “Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: Daily, intermediate, and final California cover soils.” J. Environ. Qual. 40 (3): 1010–1020. https://doi.org/10.2134/jeq2010.0407.
Cabral, A. R., M. A. Capanema, J. Gebert, J. F. Moreira, and L. B. Jugnia. 2010. “Quantifying microbial methane oxidation efficiencies in two experimental landfill biocovers using stable isotopes.” Water Air Soil Pollut. 209 (1): 157–172. https://doi.org/10.1007/s11270-009-0188-4.
Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. “DADA2: High-resolution sample inference from Illumina amplicon data.” Nat. Methods 13 (7): 581–583. https://doi.org/10.1038/nmeth.3869.
Chetri, J. K., and K. R. Reddy. 2021. “Climate-resilient biogeochemical cover for waste Containment Systems.” In Geo-extreme. Reston, VA: ASCE.
Chetri, J. K., K. R. Reddy, and D. G. Grubb. 2020. “Carbon-dioxide and hydrogen-sulfide removal from simulated landfill gas using steel slag.” J. Environ. Eng. 146 (12): 04020139. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001826.
Clarke, K. R., and R. N. Gorley. 2015. “Getting started with PRIMER v7.” PRIMER-e: plymouth, plymouth marine laboratory, 20. Auckland, New Zealand: PRIMER-e.
De Visscher, A., D. Thomas, P. Boeckx, and O. Van Cleemput. 1999. “Methane oxidation in simulated landfill cover soil environments.” Environ. Sci. Technol. 33 (11): 1854–1859. https://doi.org/10.1021/es9900961.
Edgar, R. C. 2010. “Search and clustering orders of magnitude faster than BLAST.” Bioinformatics 26 (19): 2460–2461. https://doi.org/10.1093/bioinformatics/btq461.
Gebert, J., B. K. Singh, Y. Pan, and L. Bodrossy. 2009. “Activity and structure of methanotrophic communities in landfill cover soils.” Environ. Microbiol. Rep. 1 (5): 414–423. https://doi.org/10.1111/j.1758-2229.2009.00061.x.
Gilman, A., Y. Fu, M. Hendershott, F. Chu, A. W. Puri, A. L. Smith, M. Pesesky, R. Lieberman, A. C. D. Beck, and M. E. Lidstrom. 2017. “Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C.” PeerJ 5 (Oct): e3945. https://doi.org/10.7717/peerj.3945.
Glöckner, F. O., et al. 2017. “25 years of serving the community with ribosomal RNA gene reference databases and tools.” J. Biotechnol. 261 (Nov): 169–176. https://doi.org/10.1016/j.jbiotec.2017.06.1198.
Graham, D. W., J. A. Chaudhary, R. S. Hanson, and R. G. Arnold. 1993. “Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors.” Microb. Ecol. 25 (1): 1–17. https://doi.org/10.1007/BF00182126.
Grant, J., and U. V. Bathmann. 1987. “Swept away: Resuspension of bacterial mats regulates benthic-pelagic exchange of sulfur.” Science 236 (4807): 1472–1474. https://doi.org/10.1126/science.236.4807.1472.
Hanson, R. S., and T. E. Hanson. 1996. “Methanotrophic bacteria.” Microbiol. Rev. 60 (2): 439–471. https://doi.org/10.1128/mr.60.2.439-471.1996.
Henckel, T., P. Roslev, and R. Conrad. 2000. “Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil.” Environ. Microbiol. 2 (6): 666–679. https://doi.org/10.1046/j.1462-2920.2000.00149.x.
Huang, D., L. Yang, J. H. Ko, and Q. Xu. 2019. “Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures.” Sci. Total Environ. 693 (Nov): 133594. https://doi.org/10.1016/j.scitotenv.2019.133594.
Huber-Humer, M., J. Gebert, and H. Hilger. 2008. “Biotic systems to mitigate landfill methane emissions.” Waste Manage. Res. 26 (1): 33–46. https://doi.org/10.1177/0734242X07087977.
Kaza, S., L. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank Publications.
Kightley, D., D. B. Nedwell, and M. Cooper. 1995. “Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.” Appl. Environ. Microbiol. 61 (2): 592–601. https://doi.org/10.1128/aem.61.2.592-601.1995.
Kjeldsen, P., and C. Scheutz. 2018. “Landfill gas management by methane oxidation.” In Solid waste landfilling, 477–497. Amsterdam, Netherlands: Elsevier.
Kleinjan, W. E., A. de Keizer, and A. J. Janssen. 2003. “Biologically produced sulfur.” In Elemental sulfur and sulfur-rich compounds I, edited by R. Steudel, 167–188. Berlin: Springer.
Ko, J. H., Q. Xu, and Y. C. Jang. 2015. “Emissions and control of hydrogen sulfide at landfills: A review.” Crit. Rev. Environ. Sci. Technol. 45 (19): 2043–2083. https://doi.org/10.1080/10643389.2015.1010427.
Kumaresan, D., G. C. Abell, L. Bodrossy, N. Stralis-Pavese, and J. C. Murrell. 2009. “Spatial and temporal diversity of methanotrophs in a landfill cover soil are differentially related to soil abiotic factors.” Environ. Microbiol. Rep. 1 (5): 398–407. https://doi.org/10.1111/j.1758-2229.2009.00059.x.
La, H., J. P. A. Hettiaratchi, G. Achari, J.-J. Kim, and P. F. Dunfield. 2018. “Investigation of biologically stable biofilter medium for methane mitigation by methanotrophic bacteria.” J. Hazard. Toxic Radioact. Waste 22 (3): 04018013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000406.
Lee, E.-H., K.-E. Moon, T. G. Kim, S.-D. Lee, and K.-S. Cho. 2015. “Inhibitory effects of sulfur compounds on methane oxidation by a methane-oxidizing consortium.” J. Biosci. Bioeng. 120 (6): 670–676. https://doi.org/10.1016/j.jbiosc.2015.04.006.
Lee, E.-H., T. W. Yi, K.-E. Moon, H. J. Park, H. W. Ryu, and K.-S. Cho. 2011. “Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea.” J. Microbiol. Biotechnol. 21 (7): 753–756. https://doi.org/10.4014/jmb.1102.01055.
Lehmann, J., J. Gaunt, and M. Rondon. 2006. “Bio-char sequestration in terrestrial ecosystems–A review.” Mitig. Adapt. Strateg. Glob. Change 11 (2): 403–427. https://doi.org/10.1007/s11027-005-9006-5.
Long, Y.-Y., Y. Liao, K. Zhang, L.-F. Hu, C.-R. Fang, and D.-S. Shen. 2013. “Can H2S affect the methane oxidation in a landfill?” Ecol. Eng. 60 (Part 1): 438–444. https://doi.org/10.1016/j.ecoleng.2013.09.006.
Majdinasab, A., and Q. Yuan. 2017. “Performance of the biotic systems for reducing methane emissions from landfill sites: A review.” Ecol. Eng. 104 (Part A): 116–130. https://doi.org/10.1016/j.ecoleng.2017.04.015.
Nadkarni, M. A., F. E. Martin, N. A. Jacques, and N. Hunter. 2002. “Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set.” Microbiology (Reading) 148 (1): 257–266. https://doi.org/10.1099/00221287-148-1-257.
Naqib, A., S. Poggi, W. Wang, M. Hyde, K. Kunstman, and S. J. Green. 2018. “Making and sequencing heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a flexible, two-stage PCR protocol.” In Gene expression analysis, 149–169. New York: Humana Press.
Parada, A. E., D. M. Needham, and J. A. Fuhrman. 2016. “Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples.” Environ. Microbiol. 18 (5): 1403–1414. https://doi.org/10.1111/1462-2920.13023.
Pfluger, A. R., W.-M. Wu, A. J. Pieja, J. Wan, K. H. Rostkowski, and C. S. Criddle. 2011. “Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions.” Bioresour. Technol. 102 (21): 9919–9926. https://doi.org/10.1016/j.biortech.2011.08.054.
Powelson, D. K., J. Chanton, T. Abichou, and J. Morales. 2006. “Methane oxidation in water-spreading and compost biofilters.” Waste Manage. Res. 24 (6): 528–536. https://doi.org/10.1177/0734242X06065704.
Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2012. “The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.” Nucleic Acids Res. 41 (1): D590–D596. https://doi.org/10.1093/nar/gks1219.
Rachor, I., J. Gebert, A. Gröngröft, and E.-M. Pfeiffer. 2011. “Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials.” Waste Manage. 31 (5): 833–842. https://doi.org/10.1016/j.wasman.2010.10.006.
Rai, R. K., J. K. Chetri, S. J. Green, and K. R. Reddy. 2018. “Identifying active methanotrophs and mitigation of CH4 emissions in landfill cover soil.” In Proc., Int. Congress on Environmental Geotechnics, 308–316. Singapore: Springer.
Rai, R. K., J. K. Chetri, and K. R. Reddy. 2019. “Effect of methanotrophic-activated biochar-amended soil in mitigating CH4 emissions from landfills.” In Proc. 4th Int. Conf. on Civil and Environmental Geology and Mining Engineering. Trabzon, Turkey: Nevsehir Bektas Veli Univ. and Giresun Univ.
Reddy, K. R., D. G. Grubb, and G. Kumar. 2018. “Innovative biogeochemical soil cover to mitigate landfill gas emissions.” In Proc. Int. Conf. on Protection and Restoration of the Environment XIV. Hoboken, NJ: Stevens Institute of Technology.
Reddy, K. R., R. K. Rai, S. J. Green, and J. K. Chetri. 2019. “Effect of temperature on methane oxidation and community composition in landfill cover soil.” J. Ind. Microbiol. Biotechnol. 46 (9–10): 1283–1295. https://doi.org/10.1007/s10295-019-02217-y.
Reddy, K. R., R. K. Rai, S. J. Green, and J. K. Chetri. 2020a. “Effect of pH on methane oxidation and community composition in landfill cover soil.” J. Environ. Eng. 146 (6): 04020037. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001712.
Reddy, K. R., E. N. Yargicoglu, and J. K. Chetri. 2020b. “Effects of biochar on methane oxidation and properties of landfill cover soil: Long-term column incubation tests.” J. Environ. Eng. 147 (1): 04020144. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001829.
Roncato, C. D., and A. R. Cabral. 2012. “Evaluation of methane oxidation efficiency of two biocovers: field and laboratory results.” J. Environ. Eng. 138 (2): 164–173. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000475.
Sadasivam, B. Y., and K. R. Reddy. 2014. “Landfill methane oxidation in soil and bio-based cover systems: A review.” Rev. Environ. Sci. Bio/Technol. 13 (1): 79–107. https://doi.org/10.1007/s11157-013-9325-z.
Sadasivam, B. Y., and K. R. Reddy. 2015a. “Adsorption and transport of methane in biochars derived from waste wood.” Waste Manage. 43 (9): 218–229. https://doi.org/10.1016/j.wasman.2015.04.025.
Sadasivam, B. Y., and K. R. Reddy. 2015b. “Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.” J. Environ. Manage. 158 (8): 11–23. https://doi.org/10.1016/j.jenvman.2015.04.032.
Scheutz, C., P. Kjeldsen, J. E. Bogner, A. De Visscher, J. Gebert, H. A. Hilger, M. Huber-Humer, and K. Spokas. 2009. “Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions.” Waste Manage. Res. 27 (5): 409–455. https://doi.org/10.1177/0734242X09339325.
Shackley, S., S. Sohi, R. Ibarrola, J. Hammond, O. Mašek, P. Brownsort, A. Cross, M. Prendergast-Miller, and S. Haszeldine. 2013. “Biochar, tool for climate change mitigation and soil management.” In Geoengineering responses to climate change, 73–140. New York: Springer.
Sharma, H. D., and K. R. Reddy. 2004. Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Hobeken, NJ: Wiley.
Spokas, K. A., and J. E. Bogner. 2011. “Limits and dynamics of methane oxidation in landfill cover soils.” Waste Manage. 31 (5): 823–832. https://doi.org/10.1016/j.wasman.2009.12.018.
USEPA. 2020. “Basic information about landfill gas.” Accessed October 27, 2020. https://www.epa.gov/lmop/basic-information-about-landfill-gas.
USEPA. 2021. “Sustainable materials management (SMM) web academy webinar: Material characterization and economic impacts of recycling—2020 reports.” Accessed March 3, 2021. https://www.epa.gov/smm/sustainable-materials-management-smm-web-academy-webinar-material-characterization-and-economic.
Whittenbury, R., K. C. Phillips, and J. F. Wilkinson. 1970. “Enrichment, isolation and some properties of methane-utilizing bacteria.” Microbiology (Reading) 61 (2): 205–218. https://doi.org/10.1099/00221287-61-2-205.
Wilshusen, J. H., J. P. A. Hettiaratchi, A. De Visscher, and R. Saint-Fort. 2004. “Methane oxidation and formation of EPS in compost: Effect of oxygen concentration.” Environ. Pollut. 129 (2): 305–314. https://doi.org/10.1016/j.envpol.2003.10.015.
Wohlers, H. C., and M. Feldstein. 1966. “Hydrogen sulfide darkening of exterior paint.” J. Air Pollut. Control Assoc. 16 (1): 19–21. https://doi.org/10.1080/00022470.1966.10468434.
Xia, F.-F., H.-T. Zhang, X.-M. Wei, Y. Su, and R. He. 2015. “Characterization of H2S removal and microbial community in landfill cover soils.” Environ. Sci. Pollut. Res. 22 (23): 18906–18917. https://doi.org/10.1007/s11356-015-5070-x.
Xie, T., B. Y. Sadasivam, K. R. Reddy, C. Wang, and K. Spokas. 2016. “Review of the effects of biochar amendment on soil properties and carbon sequestration.” J. Hazard. Toxic Radioact. Waste 20 (1): 04015013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000293.
Yargicoglu, E. N., and K. R. Reddy. 2017a. “Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study.” J. Environ. Manage. 193 (May): 19–31. https://doi.org/10.1016/j.jenvman.2017.01.068.
Yargicoglu, E. N., and K. R. Reddy. 2017b. “Microbial abundance and activity in biochar-amended landfill cover soils: Evidence from large-scale column and field experiments.” J. Environ. Eng. 143 (9): 04017058. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001254.
Yargicoglu, E. N., and K. R. Reddy. 2018. “Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile.” J. Geotech. Geoenviron. Eng. 144 (3): 04017123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001845.
Yargicoglu, E. N., B. Y. Sadasivam, K. R. Reddy, and K. Spokas. 2015. “Physical and chemical characterization of waste wood derived biochars.” Waste Manage. 36 (Feb): 256–268. https://doi.org/10.1016/j.wasman.2014.10.029.
Zhang, J., K. Kobert, T. Flouri, and A. Stamatakis. 2014. “PEAR: A fast and accurate Illumina Paired-End reAd merger.” Bioinformatics 30 (5): 614–620. https://doi.org/10.1093/bioinformatics/btt593.
Zhao, Q., Y. Wang, Z. Xu, and Z. Yu. 2021. “How does biochar amendment affect soil methane oxidation? A review.” J. Soil. Sediment 21 (Apr): 1575–1586. https://doi.org/10.1007/s11368-021-02889-z.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 4April 2022

History

Received: Jun 7, 2021
Accepted: Nov 30, 2021
Published online: Feb 9, 2022
Published in print: Apr 1, 2022
Discussion open until: Jul 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chicago, 842 West Taylor St., Chicago, IL 60607. ORCID: https://orcid.org/0000-0003-4842-1317. Email: [email protected]
Professor, Dept of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chigago, 842 West Taylor St., Chicago, IL 60607 (corresponding author). ORCID: https://orcid.org/0000-0002-6577-1151. Email: [email protected]
Stefan J. Green [email protected]
Director, Genomics and Microbiome Core Facility, Rush Univ. Medical Center, 1653 W. Congress Parkway, Jelke Building, Room 444, Chicago, IL 60612. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Biogeochemical versus Conventional Landfill Soil Covers: Analysis of Gas Flow Profiles, Microbial Communities, and Mineralogy, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/(ASCE)HZ.2153-5515.0000708, 26, 3, (2022).
  • Investigation of different biogeochemical cover configurations for mitigation of landfill gas emissions: laboratory column experiments, Acta Geotechnica, 10.1007/s11440-022-01509-5, 17, 12, (5481-5498), (2022).
  • Effect of Hydrogen Sulfide on Microbial Methane Oxidation in Biochar-Amended Soil, Proceedings of Indian Geotechnical and Geoenvironmental Engineering Conference (IGGEC) 2021, Vol. 2, 10.1007/978-981-19-4731-5_3, (37-45), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share