Technical Papers
Feb 9, 2022

Ammonium Removal and Potential Microbial Interactions under Oxygen-Limited Conditions

Publication: Journal of Environmental Engineering
Volume 148, Issue 4

Abstract

Some microorganisms with the nitrification function can carry out nitrogen conversion under oxygen-limited conditions. In this study, a continuous-flow biofilm reactor was operated to investigate the removal of ammonium nitrogen (NH4-N) under microaerobic or anoxic conditions. After more than 100 days of long-term operation, the NH4-N removal rate and removal percentage reached 2.92 mg/(L·h) and 72.3%, respectively. In the batch experiments, NH4-N removal was achieved regardless of the presence or absence of nitrite. The main microorganisms relating to nitrogen metabolism in the system were Nitrospira, Nitrosomonas, Candidatus Kuenenia, and denitrifying bacteria. The metagenomics analysis indicated that these functional microorganisms constituted the main nitrogen metabolic network in the system, and microorganisms such as Rhodanobacter, Nitrosomonas, Defluvii, and Cyanobacteria had the possible capacity for oxygen production. Without organic carbon in the synthetic wastewater, heterotrophs including denitrifying bacteria might utilize organic carbon such as extracellular polymeric substances produced by autotrophs. The removal of NH4-N under oxygen-limited conditions might be achieved through interactions among nitrifying bacteria, anammox bacteria, and heterotrophs, which deserves further investigation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Dr. Guangxue Wu appreciates the support from the Galway University Foundation.

References

Aguilar-Rangel, E. J., B. L. Prado, M. S. Vásquez-Murrieta, P. Estrada-de los Santos, C. Siebe, L. I. Falcon, J. Santillan, and R. J. Alcántara-Hernández. 2020. “Temporal analysis of the microbial communities in a nitrate-contaminated aquifer and the co-occurrence of anammox, n-damo and nitrous-oxide reducing bacteria.” J. Contam. Hydrol. 234 (Oct): 103657. https://doi.org/10.1016/j.jconhyd.2020.103657.
APHA (American Public Health Association). 1998. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Arp, D. J., and L. Y. Stein. 2003. “Metabolism of inorganic N compounds by ammonia-oxidizing bacteria.” Crit. Rev. Biochem. Mol. Biol. 38 (6): 471–495. https://doi.org/10.1080/10409230390267446.
Beaumont, H. J. E., S. I. Lens, W. N. M. Reijnders, H. V. Westerhoff, and R. J. M. Van Spanning. 2004. “Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor.” Mol. Microbiol. 54 (1): 148–158. https://doi.org/10.1111/j.1365-2958.2004.04248.x.
Daims, H., et al. 2015. “Complete nitrification by Nitrospira bacteria.” Nature 528 (7583): 504–509. https://doi.org/10.1038/nature16461.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. T. Rebers, and F. Smith. 1956. “Colorimetric method for determination of sugars and related substances.” Anal. Biochem. 28 (3): 350–356. https://doi.org/10.1021/ac60111a017.
Hartree, E. F. 1972. “Determination of protein: A modification of the Lowry method that gives a linear photometric response.” Anal. Biochem. 48 (2): 422–427. https://doi.org/10.1016/0003-2697(72)90094-2.
Hofbauer, S., I. Schaffner, P. G. Furtmüller, and C. Obinger. 2014. “Chlorite dismutases—A heme enzyme family for use in bioremediation and generation of molecular oxygen.” Biotechnol. J. 9 (4): 461–473. https://doi.org/10.1002/biot.201300210.
Huang, S., and P. R. Jaffe. 2015. “Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions.” Biogeosciences 12 (3): 769–779. https://doi.org/10.5194/bg-12-769-2015.
Im, W.-T., Z.-Y. Hu, K.-H. Kim, S.-K. Rhee, H. Meng, S.-T. Lee, and Z.-X. Quan. 2012. “Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes.” Antonie Van Leeuwenhoek 102 (2): 307–317. https://doi.org/10.1007/s10482-012-9739-6.
Kanehisa, M., and S. Goto. 2000. “KEGG: Kyoto encyclopedia of genes and genomes.” Nucleic Acids Res. 28 (1): 27–30. https://doi.org/10.1093/nar/28.1.27.
Kim, W., F. Racimo, J. Schluter, S. B. Levy, and K. R. Foster. 2014. “Importance of positioning for microbial evolution.” Proc. Natl. Acad. Sci. U.S.A. 111 (16): E1639–E1647. https://doi.org/10.1073/pnas.1323632111.
Kostan, J., B. Sjoeblom, F. Maixner, G. Mlynek, P. G. Furtmueller, C. Obinger, M. Wagner, H. Daims, and K. Djinovic-Carugo. 2010. “Structural and functional characterisation of the chlorite dismutase from the nitrite-oxidizing bacterium ‘Candidatus Nitrospira defluvii’: Identification of a catalytically important amino acid residue.” J. Struct. Biol. 172 (3): 331–342. https://doi.org/10.1016/j.jsb.2010.06.014.
Kuypers, M. M. M., H. K. Marchant, and B. Kartal. 2018. “The microbial nitrogen-cycling network.” Nat. Rev. Microbiol. 16 (5): 263–276. https://doi.org/10.1038/nrmicro.2018.9.
Lawson, C. E., S. Wu, A. S. Bhattacharjee, J. J. Hamilton, K. D. McMahon, R. Goel, and D. R. Noguera. 2017. “Metabolic network analysis reveals microbial community interactions in anammox granules.” Nat. Commun. 8 (1): 1–12. https://doi.org/10.1038/ncomms15416.
Li, D., C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam. 2015. “MEGAHIT: An ultra-fast single node solution for large and complex metagenomics assembly via succinct de Bruijn graph.” Bioinformatics 31 (10): 1674–1676. https://doi.org/10.1093/bioinformatics/btv033.
Liang, B., L.-Y. Wang, S. M. Mbadinga, J.-F. Liu, S.-Z. Yang, J.-D. Gu, and B.-Z. Mu. 2015. “Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation.” AMB Express 5 (1): 1–13. https://doi.org/10.1186/s13568-015-0117-4.
Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl. 2009. “Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.” Nature 461 (7266): 976–979. https://doi.org/10.1038/nature08465.
Morgan, J. W., C. F. Forster, and L. Evison. 1990. “A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges.” Water Res. 24 (6): 743–750. https://doi.org/10.1016/0043-1354(90)90030-A.
Noguchi, H., J. Park, and T. Takagi. 2006. “MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences.” Nucleic Acids Res. 34 (19): 5623–5630. https://doi.org/10.1093/nar/gkl723.
Saha, S., J. De Vneze, R. Biswas, and T. Nandy. 2018. “In situ ammonia removal by methanogenic granular biomass.” Environ. Sci. Water Res. Technol. 4 (4): 559–568. https://doi.org/10.1039/C7EW00444C.
Schloss, P. D., et al. 2009. “Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities.” Appl. Environ. Microbiol. 75 (23): 7537–7541. https://doi.org/10.1128/AEM.01541-09.
Sedlacek, C. J., et al. 2020. “Transcriptomic response of Nitrosomonas europaea transitioned from ammonia-to oxygen-limited steady-state growth.” mSystems 5 (1): e00562-19 https://doi.org/10.1128/mSystems.00562-19.
Smolders, G. J. F., J. Van der Meij, M. C. M. Van Loosdrecht, and J. J. Heijnen. 1994. “Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence.” Biotechnol. Bioeng. 43 (6): 461–470. https://doi.org/10.1002/bit.260430605.
Soler-Jofra, A., J. Perez, and M. C. M. van Loosdrecht. 2021. “Hydroxylamine and the nitrogen cycle: A review.” Water Res. 190 (Feb): 116723. https://doi.org/10.1016/j.watres.2020.116723.
Stackebrandt, E., and M. Goodfellow. 1991. Nucleic acid techniques in bacterial systematics. New York: Wiley.
Straka, L. L., K. A. Meinhardt, A. Bollmann, D. A. Stahl, and M.-K. H. Winkler. 2019. “Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria.” ISME J. 13 (8): 1997–2004. https://doi.org/10.1038/s41396-019-0408-x.
Strous, M., J. A. Fuerst, E. H. M. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. M. Jetten. 1999. “Missing lithotroph identified as new planctomycete.” Nature 400 (6743): 446–449. https://doi.org/10.1038/22749.
Sun, Y., Y. Guan, D. Zeng, K. He, and G. Wu. 2018. “Metagenomics-based interpretation of AHLs-mediated quorum sensing in anammox biofilm reactors for low-strength wastewater treatment.” Chem. Eng. J. 344 (Jul): 42–52. https://doi.org/10.1016/j.cej.2018.03.047.
Sundermann, A., M. M. Reif, S. Hofbauer, C. Obinger, and C. Oostenbrink. 2014. “Investigation of ion binding in chlorite dismutases by means of molecular dynamics simulations.” Biochemistry 53 (29): 4869–4879. https://doi.org/10.1021/bi500467h.
Wang, D., B. Liu, X. Ding, X. Sun, Z. Liang, S. Sheng, and L. Du. 2017. “Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor.” Appl. Microbiol. Biotechnol. 101 (20): 7729–7739. https://doi.org/10.1007/s00253-017-8514-z.
Wu, G., T. Zhang, M. Gu, Z. Chen, and Q. Yin. 2020a. “Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management.” Water Sci. Technol. 82 (9): 1742–1757. https://doi.org/10.2166/wst.2020.443.
Wu, P., X. Zhang, X. Wang, C. Wang, F. Faustin, and W. Liu. 2020b. “Characterization of the start-up of single and two-stage anammox processes with real low-strength wastewater treatment.” Chemosphere 245 (7): 125572. https://doi.org/10.1016/j.chemosphere.2019.125572.
Yu, R., and K. Chandran. 2010. “Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations.” BMC Microbiol. 10 (1): 1–11. https://doi.org/10.1186/1471-2180-10-70.
Yu, R., O. Perez-Garcia, H. Lu, and K. Chandran. 2018. “Nitrosomonas europaea adaptation to anoxic-oxic cycling: Insights from transcription analysis, proteomics and metabolic network modeling.” Sci. Total Environ. 615 (Feb): 1566–1573. https://doi.org/10.1016/j.scitotenv.2017.09.142.
Zhang, T., Q. Yin, Y. Shi, and G. Wu. 2021. “Microbial physiology and interactions in anammox systems with the intermittent addition of organic carbons.” Bioresour. Technol. 319 (Jan): 124226. https://doi.org/10.1016/j.biortech.2020.124226.
Zhao, Y., Y. Feng, J. Li, Y. Guo, L. Chen, and S. Liu. 2018. “Insight into the aggregation capacity of anammox consortia during reactor start-up.” Environ. Sci. Technol. 52 (6): 3685–3695. https://doi.org/10.1021/acs.est.7b06553.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 148Issue 4April 2022

History

Received: Jul 27, 2021
Accepted: Oct 22, 2021
Published online: Feb 9, 2022
Published in print: Apr 1, 2022
Discussion open until: Jul 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Tianqi Zhang
Graduate Student, Tsinghua Shenzhen International Graduate School, Tsinghua Univ., Shenzhen, Guangdong 518055, China.
Zhaolu Feng
Graduate Student, Tsinghua Shenzhen International Graduate School, Tsinghua Univ., Shenzhen, Guangdong 518055, China.
Yunhong Shi
Postdoctoral Researcher, Dept. of Civil, Structural, and Environmental Engineering, Trinity College Dublin, Dublin 2 D02 PN40, Ireland.
Qidong Yin
Postdoctoral Researcher, Tsinghua Shenzhen International Graduate School, Tsinghua Univ., Shenzhen, Guangdong 518055, China.
Associate Professor, Civil Engineering, School of Engineering, College of Science and Engineering, National Univ. of Ireland Galway, Galway H91 TK33, Ireland (corresponding author). ORCID: https://orcid.org/0000-0003-1982-2998. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification, Frontiers of Environmental Science & Engineering, 10.1007/s11783-023-1674-4, 17, 6, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share