Technical Papers
Jul 30, 2021

Antibacterial and Adsorption Properties of Sulfonated GO-PVDF Nanocomposite Ultrafiltration Membranes for Environmental Applications

Publication: Journal of Environmental Engineering
Volume 147, Issue 10

Abstract

The application of nanocomposite materials in membrane bioreactors (MBRs) is attractive because of their great potential to enhance the filtration performance and antifouling. This study modified polyvinylidene fluoride (PVDF) ultrafiltration membranes using graphene oxide (GO) and sulfonation GO (SGO). The antibacterial properties of nanocomposite membranes were tested using three Gram-negative bacterial species (Pantoea agglomerans, Escherichia coli, and Pseudomonas graminis). The results showed that PVDF-GO and PVDF-SGO ultrafiltration (UF) membranes had significantly nontoxic properties (>95%, significance at p<0.0001), indicating that it was innocuous to bacterial growth. On the other hand, the nanoparticles (NPs) (GO and SGO) had approximately 50% antibacterial activity based on the viability tests, disc diffusion, and TEM analysis. The performance of membranes was examined using a pure water prermeabilty flux test. The water flux of the PVDF-SGO membrane (720  Lm2h1) significantly increased compared with that of the GO membrane (428  Lm2h1). Furthermore, the PVDF-SGO membrane had a 65.2% removal of methylene blue (MB), indicating that the SGO incorporated in the membrane enhanced the absorption capacity of heterocyclic aromatic compounds such as MB. The nanocomposite membranes (PVDF-GO and PVDF-SGO) are more sustainable than the PVDF membrane and are promising materials for MBRs because they have higher permeability and absorption capacity, and re harmless to bacterial activity.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

This research was supported by the Basic Science Research Program though the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3054816).

References

Akhavan, O., and E. Ghaderi. 2010. “Toxicity of graphene and graphene oxide nanowalls against bacteria.” ACS Nano 4 (10): 5731–5736. https://doi.org/10.1021/nn101390x.
Akhavan, O., and E. Ghaderi. 2012. “Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner.” Carbon 50 (5): 1853–1860. https://doi.org/10.1016/j.carbon.2011.12.035.
Akhavan, O., E. Ghaderi, and A. Esfandiar. 2011. “Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation.” J. Phys. Chem. B 115 (19): 6279–6288. https://doi.org/10.1021/jp200686k.
Alavi, M., and N. Karimi. 2017. “Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract.” Artif. Cells Nanomed. Biotechnol. 46 (8): 2066–2081. https://doi.org/10.1080/21691401.2017.1408121.
Ayyaru, S., and Y.-H. Ahn. 2017. “Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes.” J. Membr. Sci. 525 (Mar): 210–219. https://doi.org/10.1016/j.memsci.2016.10.048.
Ayyaru, S., J. Choi, and Y.-H. Ahn. 2018. “Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane.” Environ. Sci. Water Res. Technol. 4 (10): 1624–1638. https://doi.org/10.1039/C8EW00316E.
Ayyaru, S., and S. Dharmalingam. 2013. “Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane.” RSC Adv. 3 (47): 25243–25251. https://doi.org/10.1039/c3ra44212h.
Barbolina, I., C. R. Woods, N. Lozano, K. Kostarelos, K. S. Novoselov, and I. S. Roberts. 2016. “Purity of graphene oxide determines its antibacterial activity.” 2D Mater. 3 (2): 025025. https://doi.org/10.1088/2053-1583/3/2/025025.
Cai, X., M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, Z. Lin, and X. Zhang. 2012. “The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity.” Carbon 50 (10): 3407–3415. https://doi.org/10.1016/j.carbon.2012.02.002.
Chang, Y.-N., X.-M. Ou, G.-M. Zeng, J.-L. Gong, C.-H. Deng, Y. Jiang, J. Liang, G.-Q. Yuan, H.-Y. Liu, and X. He. 2015. “Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation.” Appl. Surf. Sci. 343 (Jul): 1–10. https://doi.org/10.1016/j.apsusc.2015.03.082.
De Faria, A. F., D. S. T. Martinez, S. M. M. Meira, A. C. M. de Moraes, A. Brandelli, A. G. S. Filho, and O. L. Alves. 2014. “Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.” Colloids Surf., B 113 (Jan): 115–124. https://doi.org/10.1016/j.colsurfb.2013.08.006.
Gao, Y., J. Wu, X. Ren, X. Tan, T. Hayat, A. Alsaedi, C. Cheng, and C. Chen. 2017. “Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria.” Environ. Sci. Nano 4 (5): 1016–1024. https://doi.org/10.1039/C7EN00052A.
Higuchi, A., and T. Nakagawa. 1990. “Surface modified polysulfone hollow fibers. III. Fibers having a hydroxide group.” J. Appl. Polym. Sci. 41 (910): 1973–1979. https://doi.org/10.1002/app.1990.070410904.
Hu, W. B., C. Peng, W. J. Luo, M. Lv, X. M. Li, D. Li, Q. Huang, and C. H. Fan. 2010. “Graphene-based antibacterial paper.” ACS Nano 4 (7): 4317–4323. https://doi.org/10.1021/nn101097v.
Huang, L., H. Yang, Y. Zhang, and W. Xiao. 2016. “Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites.” J. Nanomater. 2016 (May): 9. https://doi.org/10.1155/2016/5685967.
Huang, N. M., H. N. Lim, C. H. Chia, M. A. Yarmo, and M. R. Muhamad. 2011. “Simple room-temperature preparation of high-yield large-area graphene oxide.” Int. J. Nanomed. 6 (Dec): 3443–3448. https://doi.org/10.2147/IJN.S26812.
Joost, U., K. Juganson, M. Visnapuu, M. Mortimer, A. Kahu, E. Nõmmiste, U. Joost, V. Kisand, and A. Ivask. 2015. “Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids.” J. Photochem. Photobiol. B 142 (Jan): 178–185. https://doi.org/10.1016/j.jphotobiol.2014.12.010.
Kang, S., M. Herzberg, D. F. Rodrigues, and M. Elimelech. 2008. “Antibacterial effects of carbon nanotubes: Size does matter!” Langmuir 24 (13): 6409–6413. https://doi.org/10.1021/la800951v.
Lee, J., H.-R. Chae, Y.-J. Won, K. Lee, C.-H. Lee, H. H. Lee, I.-C. Kim, and J.-M. Lee. 2013. “Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment.” J. Membr. Sci. 448 (Dec): 223–230. https://doi.org/10.1016/j.memsci.2013.08.017.
Liu, S., T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen. 2011. “Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress.” ACS Nano 5 (9): 6971–6980. https://doi.org/10.1021/nn202451x.
Lu, H., J. Wang, M. Stoller, T. Wang, Y. Bao, and H. Hao. 2016. “An overview of nanomaterials for water and wastewater treatment.” Adv. Mater. Sci. Eng. 2016 (Jul): 10. https://doi.org/10.1155/2016/4964828.
Ma, J., J. Zhang, Z. Xiong, Y. Yong, and X. S. Zhao. 2011. “Preparation, characterization and antibacterial properties of silver-modified graphene oxide.” J. Mater. Chem. 21 (10): 3350–3352. https://doi.org/10.1039/C0JM02806A.
Meng, F., S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang. 2009. “Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material.” Water Res. 43 (6): 1489–1512. https://doi.org/10.1016/j.watres.2008.12.044.
Nanda, S. S., D. K. Yi, and K. Kim. 2016. “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy.” Sci. Rep. 6 (1): 28443. https://doi.org/10.1038/srep28443.
Pandiyan, R., S. Ayyaru, and Y.-H. Ahn. 2018. “Non-toxic properties of TiO2 and STiO2 nanocomposite PES ultrafiltration membranes for application in membrane-based environmental biotechnology.” Ecotoxicol. Environ. Saf. 158 (Aug): 248–255. https://doi.org/10.1016/j.ecoenv.2018.04.027.
Park, J. Y., M. H. Acar, A. Akthakul, W. Kuhlman, and A. M. Mayes. 2006. “Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes.” Biomaterials 27 (6): 856–865. https://doi.org/10.1016/j.biomaterials.2005.07.010.
Park, S., N. Mohanty, J. W. Suk, A. Nagaraja, J. An, R. D. Piner, W. Cai, D. R. Dreyer, V. Berry, and R. S. Ruoff. 2010. “Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite.” Adv. Mater. 22 (15): 1736–1740. https://doi.org/10.1002/adma.200903611.
Perreault, F., A. Fonseca de Faria, S. Nejati, and M. Elimelech. 2015. “Antimicrobial properties of graphene oxide nanosheets: Why size matters.” ACS Nano 9 (7): 7226–7236. https://doi.org/10.1021/acsnano.5b02067.
Prasad, K., G. S. Lekshmi, K. Ostrikov, V. Lussini, J. Blinco, M. Mohandas, K. Vasilev, S. Bottle, K. Bazaka, and K. Ostrikov. 2017. “Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria.” Sci. Rep. 7 (1): 1–11. https://doi.org/10.1038/s41598-017-01669-5.
Rahimpour, A., M. Jahanshahi, B. Rajaeian, and M. Rahimnejad. 2011. “TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties.” Desalination 278 (1–3): 343–353. https://doi.org/10.1016/j.desal.2011.05.049.
Shanmugam, M., A. Alsalme, A. Alghamdi, and R. Jayavel. 2015. “Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight.” ACS Appl. Mater. Interfaces 7 (27): 14905–14911. https://doi.org/10.1021/acsami.5b02715.
Sreeprasad, T. S., M. S. Maliyekkal, K. Deepti, K. Chaudhari, P. L. Xavier, and T. Pradeep. 2011. “Transparent, luminescent, antibacterial and patternable film forming composites of graphene oxide/reduced graphene oxide.” ACS Appl. Mater. Interfaces 3 (7): 2643–2654. https://doi.org/10.1021/am200447p.
Sun, S.-Q., B. Sun, W. Zhang, and D. Wang. 2008. “Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method.” Bull. Mater. Sci. 31 (1): 61–66. https://doi.org/10.1007/s12034-008-0011-7.
Sunada, K., Y. Kikuchi, K. Hashimoto, and A. Fujishima. 1998. “Bactericidal and detoxification effects of TiO2 thin film photocatalysts.” Environ. Sci. Technol. 32 (5): 726–728. https://doi.org/10.1021/es970860o.
Valipour, A., N. Hamnabard, and Y.-H. Ahn. 2015. “Performance evaluation of highly conductive graphene (RGOHI–AcOH) and graphene/metal nanoparticle composites (RGO/Ni) coated on carbon cloth for supercapacitor applications.” RSC Adv. 5 (113): 92970–92979. https://doi.org/10.1039/C5RA14806E.
Wang, L. L., C. Hu, and L. Q. Shao. 2017. “The antimicrobial activity of nanoparticles: Present situation and prospects for the future.” Int. J. Nanomed. 12 (Feb): 1227–1249. https://doi.org/10.2147/IJN.S121956.
Wu, T., B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, and J. Wang. 2015. “Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation.” RSC Adv. 5 (11): 7880–7889. https://doi.org/10.1039/C4RA13476A.
Xu, C., A. Cui, Y. Xu, and X. Fu. 2013. “Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification.” Carbon 62 (Oct): 465–471. https://doi.org/10.1016/j.carbon.2013.06.035.
Xu, Z., T. Wu, J. Shi, K. Teng, W. Wang, M. Ma, J. Li, X. Qian, C. Li, and J. Fan. 2016. “Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment.” J. Membr. Sci. 520 (Dec): 281–293. https://doi.org/10.1016/j.memsci.2016.07.060.
Xu, Z., J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, and X. Qian. 2014. “Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes.” J. Membr. Sci. 458 (May): 1–13. https://doi.org/10.1016/j.memsci.2014.01.050.
Yan, X., L. Huo, C. Ma, and J. Lu. 2019. “Layer-by-layer assembly of graphene oxide-TiO2 membranes for enhanced photocatalytic and self-cleaning performance.” Process Saf. Environ. Prot. 130 (Oct): 257–264. https://doi.org/10.1016/j.psep.2019.08.021.
Yu, L., Y. Zhang, B. Zhang, J. Liu, H. Zhang, and C. Song. 2013. “Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties.” J Membr. Sci. 447 (Nov): 452–462. https://doi.org/10.1016/j.memsci.2013.07.042.
Zhang, J., Z. Xu, W. Mai, C. Min, B. Zhou, M. Shan, Y. Li, C. Yang, Z. Wang, and X. Qian. 2013a. “Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials.” J. Mater. Chem. A 1 (9): 3101–3111. https://doi.org/10.1039/c2ta01415g.
Zhang, J. G., Z. W. Xu, M. J. Shan, B. M. Zhou, Y. L. Li, B. D. Li, J. R. Niu, and X. M. Qian. 2013b. “Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes.” J. Membr. Sci. 448 (Dec): 81–92. https://doi.org/10.1016/j.memsci.2013.07.064.
Zhang, N., J. Hou, S. M. Chen, C. Q. Xiong, H. H. Liu, Y. L. Jin, J. N. Wang, Q. He, R. Zhao, and Z. X. Nie. 2016. “Rapidly probing antibacterial activity of graphene oxide by mass spectrometry-based metabolite fingerprinting.” Sci. Rep. 6 (1): 1–10. https://doi.org/10.1038/Srep28045.
Zhang, Y. B., S. F. Ali, E. Dervishi, Y. Xu, Z. R. Li, D. Casciano, and A. S. Biris. 2010. “Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochomocytoma-derived PC12 cells.” ACS Nano 4 (6): 3181–3186. https://doi.org/10.1021/nn1007176.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 10October 2021

History

Received: Mar 13, 2021
Accepted: Jun 2, 2021
Published online: Jul 30, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 30, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Sivasankaran Ayyaru [email protected]
Assistant Professor, Dept. of Civil Engineering, Yeungnam Univ., Gyeongsan 38541, South Korea. Email: [email protected]
Rajesh Pandiyan [email protected]
Postdoctoral Researcher, Dept. of Civil Engineering, Yeungnam Univ., Gyeongsan 38541, South Korea; Associate Professor, Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India. Email: [email protected]
Young-Ho Ahn [email protected]
Professor, Dept. of Civil Engineering, Yeungnam Univ., Gyeongsan 38541, South Korea (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • 2D Ag Ion-Loaded Anionic Nanosheets for Polymer-Based Film with Durable Antibacterial Activities, ACS Omega, 10.1021/acsomega.2c02718, 7, 38, (33858-33865), (2022).
  • Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles, Membranes, 10.3390/membranes12010042, 12, 1, (42), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share