Technical Papers
Jul 13, 2021

Benchmarking Reynolds-Averaged Navier–Stokes Turbulence Models for Water Clarification Systems

Publication: Journal of Environmental Engineering
Volume 147, Issue 9

Abstract

Turbulence is inherent in clarification basin systems; turbulence is challenging to quantify, yet directly impacting particulate matter (PM) separation. In computational fluid dynamic (CFD), Reynolds-averaged Navier-Stokes (RANS) turbulence models are widely adopted for computational efficiency. However, the accuracy of RANS is less examined in clarification systems. RANS models without benchmarking can potentially cast doubt or false confidence for results. In this study, common RANS models are applied to steady-flow clarification. Results are examined against high-resolution large-eddy simulations (LES) by high-order spectral element method (SEM) Nek5000 and laser Doppler anemometry (LDA) for three deflector configurations: (1) one-sided, (2) two-sided, and (3) no deflector. RANS model’s relative mean differences with respect to LES ranges from 13.9% to 41.4% and 32.7% to 105.1% in streamwise and vertical velocities, varying with configurations. LES predictions were improved from RANS. LES and RANS differences transcend hydrodynamics and persist for PM. Across configurations, RANS models of PM separation are predominately lower than LES. RANS model variability is discerned across clarifier configurations, decreasing with increasing PM diameter.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies. The source code and compilation instructions of k-Omega2006 for OpenFOAM are available at GitHub repository (https://github.com/Rdfing/TurbulenceModels). An example of computation case of two-sided deflector configuration with k-OmegaSST in OpenFOAM are available at GitHub repository (https://github.com/Rdfing/benchmarkCasesRANS/tree/master/benchmarkCases/two-sided-deflector/kOmegaSST).

Acknowledgments

This research (P0089833) was supported by United States Geological Survey funding through the Water Resources Research Institute in ESSIE at the University of Florida.

References

Achari, A. M., and M. K. Das. 2015. “Application of various RANS based models towards predicting turbulent slot jet impingement.” Int. J. Therm. Sci. 98 (Dec): 332–351. https://doi.org/10.1016/j.ijthermalsci.2015.07.018.
Adams, E. W., and W. Rodi. 1990. “Modeling flow and mixing in sedimentation tanks.” J. Hydraul. Eng. 116 (7): 895–913. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:7(895).
Aref, H., and S. Balachandar. 2018. A first course in computational fluid dynamics. Cambridge, UK: Cambridge University Press.
Argyropoulos, C. D., and N. C. Markatos. 2015. “Recent advances on the numerical modelling of turbulent flows.” Appl. Math. Modell. 39 (2): 693–732.https://doi.org/10.1016/j.apm.2014.07.001.
Balachandar, S., and J. K. Eaton. 2010. “Turbulent dispersed multiphase flow.” Annu. Rev. Fluid Mech. 42 (3): 111–133. https://doi.org/10.1146/annurev.fluid.010908.165243.
Bardina, J. E., P. G. Huang, and T. J. Coakley. 1997. “Turbulence modeling validation.” In Proc., 28th Fluid Dynamics Conf. Reston, VA: American Institute of Aeronautics and Astronautics.
Batchelor, G. K. 2000. An introduction to fluid dynamics. Cambridge, UK: Cambridge University Press.
Burt, D. J. 2010. “Improved design of settling tanks using an extended drift flux model.” Ph.D. thesis, Dept. of Mechanical Engineering, Univ. of Bristol.
Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang. 1988. Spectral methods in fluid dynamics. Berlin: Springer.
Celik, I., and W. Rodi. 2008. “Modeling suspended sediment transport in nonequilibrium situations.” J. Hydraul. Eng. 114 (10): 1157–1191. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1157).
Chesapeake Bay Scientific and Technical Advisory Committee. 2015. Evaluating proprietary BMPs: Is it time for a state, regional or national program? Fairfax, VA: Chesapeake Bay Scientific and Technical Advisory Committee.
Combest, D. P., P. A. Ramachandran, and M. P. Dudukovic. 2011. “On the gradient diffusion hypothesis and passive scalar transport in turbulent flows.” Ind. Eng. Chem. Res. 50 (15): 8817–8823. https://doi.org/10.1021/ie200055s.
Craft, T. J., H. Iacovides, and J. H. Yoon. 2000. “Progress in the use of non-linear two-equation models in the computation of convective heat-transfer in impinging and separated flows.” Flow Turbul. Combus. 63 (1): 59–80. https://doi.org/10.1023/A:1009973923473.
Craft, T. J., B. E. Launder, and K. Suga. 1997. “Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model.” Int. J. Heat Fluid Flow 18 (1): 15–28. https://doi.org/10.1016/S0142-727X(96)00145-2.
Durbin, P. A. 2018. “Some recent developments in turbulence closure modeling.” Annu. Rev. Fluid Mech. 50 (1): 77–103. https://doi.org/10.1146/annurev-fluid-122316-045020.
Durbin, P. A., and I. P. Shih. 2005. “An overview of turbulence modeling.” WIT Trans. State Art Sci. Eng. 15 (Feb): 1755–8336. https://doi.org/10.2495/978-1-85312-956-8/01.
Elghobashi, S. 1991. “Particle-laden turbulent flows: Direct simulation and closure models.” Appl. Sci. Res. 48 (3–4): 301–314. https://doi.org/10.1007/BF02008202.
Ferry, J., and S. Balachandar. 2001. “A fast Eulerian method for disperse two-phase flow.” Int. J. Multiph. Flow 27 (7): 1199–1226. https://doi.org/10.1016/S0301-9322(00)00069-0.
Fischer, P., and J. Mullen. 2001. “Stabilisation par filtrage pour la méthode des éléments spectraux.” Comptes Rendus de l’Academie des Sci. 332 (3): 265–270. https://doi.org/10.1016/S0764-4442(00)01763-8.
Fischer, P. F. 1997. “An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations.” J. Comput. Phys. 133 (1): 84–101. https://doi.org/10.1006/jcph.1997.5651.
Fröhlich, J., C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner. 2005. “Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions.” J. Fluid Mech. 526 (3): 19–66. https://doi.org/10.1017/S0022112004002812.
Gao, H., and M. K. Stenstrom. 2018. “Evaluation of three turbulence models in predicting the steady state hydrodynamics of a secondary sedimentation tank.” Water Res. 143 (Oct): 445–456. https://doi.org/10.1016/j.watres.2018.06.067.
Goula, A. M., M. Kostoglou, T. D. Karapantsios, and A. I. Zouboulis. 2008. “A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle.” Chem. Eng. J. 140 (1–3): 110–121. https://doi.org/10.1016/j.cej.2007.09.022.
Gualtieri, C., A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser. 2017. “On the values for the turbulent Schmidt number in environmental flows.” Fluids 2 (2): 17. https://doi.org/10.3390/fluids2020017.
Han, X., M. M. Rahman, and R. K. Agarwal. 2018. “Development and application of a wall distance free Wray-Agarwal turbulence model (Wa2018).” In Proc., AIAA Aerospace Sciences Meeting. Reston, VA: American Institute of Aeronautics and Astronautics.
Hinterberger, C., J. Fröhlich, and W. Rodi. 2008. “2D and 3D turbulent fluctuations in open channel flow with Re = 590 studied by large eddy simulation.” Flow Turbulence Combus. 80 (2): 225–253. https://doi.org/10.1007/s10494-007-9122-2.
Imam, E., J. A. McCorquodale, and J. K. Bewtra. 1983. “Numerical modeling of sedimentation tanks.” J. Hydraul. Eng. 109 (12): 1740–1754. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:12(1740).
Jamshidnia, H., and B. Firoozabadi. 2010. “Experimental investigation of baffle effect on the flow in a rectangular primary sedimentation tank.” Scientia Iranica 17 (4): 241–252.
Karpinska, A. M., and J. Bridgeman. 2016. “CFD-aided modelling of activated sludge systems—A critical review.” Water Res. 88 (1): 861–879. https://doi.org/10.1016/j.watres.2015.11.008.
Kolmogorov, A. N. 1991. “Dissipation of energy in the locally isotropic turbulence.” Proc. R. Soc. London 434 (1890): 15–17. https://doi.org/10.1098/rspa.1991.0076.
Komminaho, J., and M. Skote. 2002. “Reynolds stress budgets in Couette and boundary layer flows.” Flow Turbulence Combus. 68 (2): 167–192. https://doi.org/10.1023/A:1020404706293.
Krebs, P. 1995. “Success and shortcomings of clarifier modeling.” Water Sci. Technol. 31 (2): 181–191. https://doi.org/10.2166/wst.1995.0098.
Lardeau, S., and F. Billard. 2016. “Development of an elliptic-blending lag model for industrial applications.” In Proc., 54th AIAA Aerospace Sciences Meeting. Reston, VA: American Institute of Aeronautics and Astronautics.
Launder, B., and D. Spalding. 1974. “The numerical computation of turbulent flows.” Comput. Methods Appl. Mech. Eng. 3 (2): 269–289. https://doi.org/10.1016/0045-7825(74)90029-2.
Li, H., S. Balachandar, and J. Sansalone. 2021a. “Discordance of tracer transport and particulate matter fate in a baffled clarification system.” J Fluids Eng 143 (5): 13. https://doi.org/10.1115/1.4049690.
Li, H., S. Balachandar, and J. Sansalone. 2021b. “Large-eddy simulation of flow turbulence in clarification systems.” Acta Mechanica 232 (4): 1–24. https://doi.org/10.1007/s00707-020-02914-1.
Li, H., and J. J. Sansalone. 2020a. “CFD as a complementary tool to benchmark physical testing of PM separation by unit operations.” J. Environ. Eng. 146 (11): 04020122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001803.
Li, H., and J. J. Sansalone. 2020b. “CFD model of PM sedimentation and resuspension in urban water clarification.” J. Environ. Eng. 146 (3): 04019118. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001649.
Li, H., D. Spelman, and J. Sansalone. 2021c. “Baffled clarification basin hydrodynamics and elution in a continuous time domain.” J. Hydrol. 595 (2): 125958. https://doi.org/10.1016/j.jhydrol.2021.125958.
Liu, B., J. Ma, L. Luo, Y. Bai, S. Wang, and J. Zhang. 2010. “Two-dimensional LDV measurement, modeling, and optimal design of rectangular primary settling tanks.” J. Environ. Eng. 136 (5): 501–507. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000186.
Liu, K., N. Zgheib, and S. Balachandar. 2020a. “On the spreading of non-canonical thermals from direct numerical simulations.” Phys. Fluids 32 (2): 026602. https://doi.org/10.1063/1.5138981.
Liu, X., and M. H. García. 2008. “Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour.” J. Waterway, Port, Coastal, Ocean Eng. 134 (4): 203–217. https://doi.org/10.1061/(asce)0733-950x(2008)134:4(203).
Liu, X., and J. Zhang. 2019. Computational fluid dynamics: Applications in water, wastewater, and stormwater treatment. Reston, VA: ASCE.
Liu, X., J. Zhang, K. D. Nielsen, and Y. A. Cataño-Lopera. 2020b. “Challenges and opportunities of computational fluid dynamics in water, wastewater, and stormwater treatment.” J. Environ. Eng. 146 (11): 02520002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001815.
Lyn, D. A., and W. Rodi. 1990. “Turbulence measurements in model settling tank.” J. Hydraul. Eng. 116 (1): 3–21. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(3).
McCorquodale, J. A., and S. Zhou. 1993. “Effects of hydraulic and solids loading on clarifier performance.” J. Hydraul. Res. 31 (4): 461–478. https://doi.org/10.1080/00221689309498870.
Menter, F. R. 1994. “Two-equation eddy-viscosity turbulence models for engineering applications.” AIAA J. 32 (8): 1598–1605. https://doi.org/10.2514/3.12149.
Menter, F. R., M. Kuntz, and R. Langtry. 2003. “Ten years of industrial experience with the SST turbulence model.” Turbulence Heat Mass Trans. 4 (1): 625–632.
NASA (National Aeronautics and Space Administration) Langley Research Center. 2020. “Turbulence modeling resource.” Accessed May 18, 2020. https://turbmodels.larc.nasa.gov/.
Özgökmen, T. M., P. F. Fischer, J. Duan, and T. Iliescu. 2004a. “Entrainment in bottom gravity currents over complex topography from three-dimensional nonhydrostatic simulations.” Geophys. Res. Lett. 31 (13): L13212. https://doi.org/10.1029/2004GL020186.
Özgökmen, T. M., P. F. Fischer, J. Duan, and T. Iliescu. 2004b. “Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model.” J. Phys. Oceanogr. 34 (9): 2006–2026. https://doi.org/10.1175/1520-0485(2004)034%3C2006:TTBDCF%3E2.0.CO;2.
Peplinski, D. K., and J. J. Ducoste. 2002. “Modeling of disinfection contactor hydraulics under uncertainty.” J. Environ. Eng. 128 (11): 1056–1067. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1056).
Pope, S. B. 2000. Turbulent flows. Cambridge, UK: Cambridge University Press.
Rauen, W. B., A. Angeloudis, and R. A. Falconer. 2012. “Appraisal of chlorine contact tank modelling practices.” Water Res. 46 (18): 5834–5847. https://doi.org/10.1016/j.watres.2012.08.013.
Razmi, A., R. Bakhtyar, B. Firoozabadi, and D. Barry. 2013. “Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks.” Can. J. Civ. Eng. 40 (2): 140–150. https://doi.org/10.1139/cjce-2012-0176.
Rodi, W. 1991. “Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall.” In Proc., 29th Aerospace Sciences Meeting. Reston, VA: American Institute of Aeronautics and Astronautics.
Rodi, W., J. H. Ferziger, M. Breuer, and M. Pourquié. 1997. “Status of large eddy simulation: results of a workshop.” J. Fluids Eng. 119 (2): 248–262. https://doi.org/10.1115/1.2819128.
Salinas, J., S. Balachandar, M. Shringarpure, J. Fedele, D. Hoyal, and M. Cantero. 2020. “Soft transition between subcritical and supercritical currents through intermittent cascading interfacial instabilities.” Proc. Nat. Acad. Sci. 117 (31): 18278–18284. https://doi.org/10.1073/PNAS.2008959117.
Salinas, J. S., M. Shringarpure, M. I. Cantero, and S. Balachandar. 2018. “Mixing at a sediment concentration interface in turbulent open channel flow.” Environ. Fluid Mech. 18 (1): 173–200. https://doi.org/10.1007/s10652-017-9521-4.
Schiller, L., and Z. Naumann. 1935. “A drag coefficient correlation.” Z. Ver. Dtsch. Ing. 77: 318–320.
Schlatter, P., S. Stolz, and L. Kleiser. 2004. “LES of transitional flows using the approximate deconvolution model.” Int. J. Heat Fluid Flow 25 (3): 549–558. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.020.
Shen, L., and D. K. Yue. 2001. “Large-eddy simulation of free-surface turbulence.” J. Fluid Mech. 440 (6): 75–116. https://doi.org/10.1017/S0022112001004669.
Shih, T. H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. “A new k-eddy viscosity model for high Reynolds number turbulent flows.” Comput. Fluids 24 (3): 227–238. https://doi.org/10.1016/0045-7930(94)00032-T.
Spalart, P. R. 2009. “Detached-eddy simulation.” Annu. Rev. Fluid Mech. 41 (1): 181–202. https://doi.org/10.1146/annurev.fluid.010908.165130.
Spalart, P. R., and S. R. Allmaras. 1994. “One-equation turbulence model for aerodynamic flows.” Recherche aerospatiale 25 (1): 5–21. https://doi.org/10.2514/6.1992-439.
Stamou, A. I. 1991. “On the prediction of flow and mixing in settling tanks using a curvature-modified k-ε model.” Appl. Math. Modell. 15 (7): 351–358. https://doi.org/10.1016/0307-904X(91)90060-3.
Stamou, A. I., E. W. Adams, and W. Rodi. 1989. “Numerical modeling of flow and settling in primary rectangular clarifiers.” J. Hydraul. Res. 27 (5): 665–682. https://doi.org/10.1080/00221688909499117.
St. Johns River Water Management District. 2018. Environmental resource permit applicant’s handbook volume 2. Palatka, FL: St. Johns River Water Management.
Stolz, S., and N. A. Adams. 1999. “An approximate deconvolution procedure for large-eddy simulation.” Phys. Fluids 11 (7): 1699–1701. https://doi.org/10.1063/1.869867.
Szalai, L., P. Krebs, and W. Rodi. 1994. “Simulation of flow in circular clarifiers with and without swirl.” J. Hydraul. Eng. 120 (1): 4–21. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:1(4).
Thangam, S., and C. G. Speziale. 1992. “Turbulent flow past a backward-facing step: A critical evaluation of two-equation models.” AIAA J. 30 (5): 1314–1320. https://doi.org/10.2514/3.11066.
Tominaga, Y., and T. Stathopoulos. 2012. “CFD modeling of pollution dispersion in building array: Evaluation of turbulent scalar flux modeling in RANS model using LES results.” J. Wind Eng. Ind. Aerodyn. 104–106 (8): 484–491. https://doi.org/10.1016/j.jweia.2012.02.004.
Vinuesa, R., A. Noorani, A. Lozano-Durán, G. K. Khoury, P. Schlatter, P. F. Fischer, and H. M. Nagib. 2014. “Aspect ratio effects in turbulent duct flows studied through direct numerical simulation.” J. Turbul. 15 (10): 677–706. https://doi.org/10.1080/14685248.2014.925623.
Vinuesa, R., C. Prus, P. Schlatter, and H. M. Nagib. 2016. “Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts.” Meccanica 51 (12): 3025–3042. https://doi.org/10.1007/s11012-016-0558-0.
Vinuesa, R., P. Schlatter, and H. M. Nagib. 2015. “On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows.” J. Turbul. 16 (6): 588–606. https://doi.org/10.1080/14685248.2014.996716.
Wang, R. Q., A. W. K. Law, and E. E. Adams. 2014. “Large-eddy simulation (LES) of settling particle cloud dynamics.” Int. J. Multiphase Flow 67 (8): 65–75. https://doi.org/10.1016/j.ijmultiphaseflow.2014.08.004.
Wang, R. Q., A. W. K. Law, E. E. Adams, and O. B. Fringer. 2009. “Buoyant formation number of a starting buoyant jet.” Phys. Fluids 21 (12): 125104. https://doi.org/10.1063/1.3275849.
Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. 1998. “A tensorial approach to computational continuum mechanics using object-oriented techniques.” Comput. Phys. 12 (6): 620. https://doi.org/10.1063/1.168744.
Wilcox, D. C. 1991. “A half century historical review of the k-omega model.” AIAA Paper 615 (6): 1–10. https://doi.org/10.2514/6.1991-615.
Wilcox, D. C. 1998. Turbulence modeling for CFD. 2nd ed. Washington, DC: DCW Industries.
Wilcox, D. C. 2006. Turbulence modeling for CFD. 3rd ed. Washington, DC: DCW Industries.
Wolfshtein, M. 1969. “The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient.” Int. J. Heat Mass Transfer 12 (3): 301–318. https://doi.org/10.1016/0017-9310(69)90012-X.
Wu, X. 2017. “Inflow turbulence generation methods.” Annu. Rev. Fluid Mech. 49 (1): 23–49. https://doi.org/10.1146/annurev-fluid-010816-060322.
Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of turbulence. I. Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi.org/10.1007/BF01061452.
Yang, D., S. He, L. Shen, and X. Luo. 2020. “Large eddy simulation coupled with immersed boundary method for turbulent flows over a backward facing step.” Proc. Inst. Mech. Eng. 1–10. https://doi.org/10.1177/0954406220954892.
Yoder, D. A., J. R. DeBonis, and N. J. Georgiadis. 2015. “Modeling of turbulent free shear flows.” Comput. Fluids 117 (Aug): 212–232. https://doi.org/10.1016/j.compfluid.2015.05.009.
Zhang, J., A. E. Tejada-Martínez, and Q. Zhang. 2014a. “Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades.” Environ. Modell. Software 58 (Aug): 71–85. https://doi.org/10.1016/j.envsoft.2014.04.003.
Zhang, J., A. E. Tejada-Martínez, Q. Zhang, and H. Lei. 2014b. “Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.” Water Res. 52 (12): 155–167. https://doi.org/10.1016/j.watres.2013.12.037.
Zhou, J., R. J. Adrian, S. Balachandar, and T. M. Kendall. 1999. “Mechanisms for generating coherent packets of hairpin vortices in channel flow.” J. Fluid Mech. 387 (2): 353–396. https://doi.org/10.1017/S002211209900467X.
Zwick, D., and S. Balachandar. 2020. “A scalable Euler-Lagrange approach for multiphase flow simulation on spectral elements.” Int. J. High Perform. Comput. Appl. 34 (3): 316–339. https://doi.org/10.1177/1094342019867756.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 9September 2021

History

Received: Nov 6, 2020
Accepted: Mar 26, 2021
Published online: Jul 13, 2021
Published in print: Sep 1, 2021
Discussion open until: Dec 13, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Engineering School of Sustainable Infrastructure and Environment, Univ. of Florida, Gainesville, FL 32611 (corresponding author). ORCID: https://orcid.org/0000-0002-2343-2813. Email: [email protected]
John Sansalone, Ph.D., M.ASCE [email protected]
Professor, Engineering School of Sustainable Infrastructure and Environment, Univ. of Florida, Gainesville, FL 32611. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Coupling Computational Fluid Dynamics and Artificial Intelligence for Sustainable Urban Water Management and Treatment, EWaS5, 10.3390/environsciproc2022021087, (87), (2023).
  • InterAdsFoam: An Open-Source CFD Model for Granular Media–Adsorption Systems with Dynamic Reaction Zones Subject to Uncontrolled Urban Water Fluxes, Journal of Environmental Engineering, 10.1061/(ASCE)EE.1943-7870.0002027, 148, 9, (2022).
  • Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics, Water Research, 10.1016/j.watres.2022.118685, 220, (118685), (2022).
  • Interrogating common clarification models for unit operation systems with dynamic similitude, Water Research, 10.1016/j.watres.2022.118265, 215, (118265), (2022).
  • A CFD-ML augmented alternative to residence time for clarification basin scaling and design, Water Research, 10.1016/j.watres.2021.117965, 209, (117965), (2022).
  • Recent Developments on Application of Different Turbulence and Multiphase Models in Sedimentation Tank Modeling—a Review, Water, Air, & Soil Pollution, 10.1007/s11270-022-06007-8, 234, 1, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share