Technical Papers
Jan 18, 2021

Long-Term Operation of a Pilot-Scale Membrane Bioreactor Treating Brewery Wastewater: Relaxation as a Method for Detection of Membrane Fouling

Publication: Journal of Environmental Engineering
Volume 147, Issue 4

Abstract

Fouling control and operation below critical fluxes are relevant for operating membrane bioreactors (MBRs). Within this study, the long-term performance of a pilot-scale MBR was characterized with the aim of achieving maximum operating time without chemical cleaning. The MBR was fed with the effluent from a full-scale anaerobic reactor from a brewery and, combined with an upstream flotation unit, the MBR reduced chemical oxygen demand by 93.6%. During operation, the permeate flux was varied and a dependency of the fouling rate on permeate flux was found, which was not affected by the fluctuations caused by treatment with real wastewater. The fouling was controlled by intermittent 1-min relaxation phases followed by 4-min filtration. Applying this method, the MBR was operated at a flux of 9.511.5  L/(m2h) and a fouling rate below 0.06  kPa/day for 329 days without chemical cleaning until the permeability decreased by >50% to 0.8  L/(m2  hkPa). Based on monitoring the relaxation phases alone, a sudden increase in blockage was found by Day 280, while transmembrane pressure and permeability readings continued without registering major variation for more than 40 days later. This early indication is in industrial scale of special importance because it can be used as an additional method for detecting fouling.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The presented work was funded by the Bavarian Research Foundation (AZ-847-08).

References

Arantes, M. K., H. J. Alves, R. Sequinel, and E. A. da Silva. 2017. “Treatment of brewery wastewater and its use for biological production of methane and hydrogen.” Int. J. Hydrog. Energy 42 (42): 26243–26256. https://doi.org/10.1016/j.ijhydene.2017.08.206.
Bacchin, P., P. Aimar, and R. W. Field. 2006. “Critical and sustainable fluxes: Theory, experiments and applications.” J. Membr. Sci. 281 (1–2): 42–69. https://doi.org/10.1016/j.memsci.2006.04.014.
Baumgarten, S. 2007. “Membranbioreaktoren zur industriellen Abwasserreinigung.” Ph.D. dissertation, Institute for Urban Water Management, RWTH Aachen.
Bégoin, L., M. Rabiller-Baudry, B. Chaufer, M.-C. Hautbois, and T. Doneva. 2006. “Ageing of PES industrial spiral-wound membranes in acid whey ultrafiltration.” Desalination 192 (1–3): 25–39. https://doi.org/10.1016/j.desal.2005.10.009.
Blank, A. 2009. “Einfluss der Abwassertemperatur auf Bemessung, Auslegung und Reinigungsleistung von Scheibentauchkörpern.” Ph.D. dissertation, Institute for Water and River Basin Management, Univ. Karlsruhe.
Bouhabila, E. H., R. B. Aïm, and H. Buisson. 2001. “Fouling characterisation in membrane bioreactors.” Sep. Purif. Technol. 22–23 (1–2): 123–132. https://doi.org/10.1016/S1383-5866(00)00156-8.
Chan, Y. J., M. F. Chong, C. L. Law, and D. G. Hassell. 2009. “A review on anaerobic–aerobic treatment of industrial and municipal wastewater.” Chem. Eng. J. 155 (1–2): 1–8. https://doi.org/10.1016/j.cej.2009.06.041.
Chen, H., S. Chang, Q. Guo, Y. Hong, and P. Wu. 2016. “Brewery wastewater treatment using an anaerobic membrane bioreactor.” Biochem. Eng. J. 105 (Jan): 321–331. https://doi.org/10.1016/j.bej.2015.10.006.
Cho, B. D., and A. G. Fane. 2002. “Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.” J. Membr. Sci. 209 (2): 391–403. https://doi.org/10.1016/S0376-7388(02)00321-6.
Christensen, M. L., T. V. Bugge, B. H. Hede, M. Nierychlo, P. Larsen, and M. K. Jørgensen. 2016. “Effects of relaxation time on fouling propensity in membrane bioreactors.” J. Membr. Sci. 504 (Apr): 176–184. https://doi.org/10.1016/j.memsci.2016.01.006.
Chua, H. C., T. C. Arnot, and J. A. Howell. 2002. “Controlling fouling in membrane bioreactors operated with a variable throughput.” Desalination 149 (1–3): 225–229. https://doi.org/10.1016/S0011-9164(02)00764-6.
Coppini, E., L. Palli, D. Fibbi, and R. Gori. 2018. “Long-term performance of a full-scale membrane plant for landfill leachate pretreatment: A case study.” Membranes 8 (3): 52. https://doi.org/10.3390/membranes8030052.
Cramer, M., M. Kloth, and S. Traenckner. 2017. “Optimization and fouling mechanism of a thermophile submerged.” J. Water Process Eng. 17 (Jun): 110–116. https://doi.org/10.1016/j.jwpe.2017.02.008.
Dai, H., X. Yang, T. Dong, Y. Ke, and T. Wang. 2010. “Engineering application of MBR process to the treatment of beer brewing wastewater.” Mod. Appl. Sci. 4 (9): 103–109. https://doi.org/10.5539/mas.v4n9p103.
Defrance, L., M. Y. Jaffrin, B. Gupta, P. Paullier, and V. Geaugey. 2000. “Contribution of various constituents of activated sludge to membrane bioreactor fouling.” Bioresour. Technol. 73 (2): 105–112. https://doi.org/10.1016/S0960-8524(99)00163-7.
Diez, V., D. Ezquerra, J. L. Cabezas, A. García, and C. Ramos. 2014. “A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions.” J. Membr. Sci. 453 (Mar): 1–11. https://doi.org/10.1016/j.memsci.2013.10.055.
DIN (Deutsches Institut für Normung). 1985. German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of water content, of dry residue and of solids content (S 2). DIN 38414-2:1985-11. Berlin: DIN.
DIN (Deutsches Institut für Normung). 1987. German standard methods for the examination of water, waste water and sludge; parameters characterizing effects and substances (group H); determination of total dry residue, filtrate dry residue and residue on ignition (H1). DIN 38409-1:1987-01. Berlin: DIN.
DIN (Deutsches Institut für Normung). 1998. Water quality: Determination of biochemical oxygen demand after n days (BODn). Part 1: Dilution and seeding method with allylthiourea acid addition (ISO 5815:1989, modified); German version EN 1899-1:1998. DIN EN 1899-1:1998-05. Berlin: DIN.
Drews, A. 2010. “Membrane fouling in membrane bioreactors: Characterisation, contradictions, cause and cures.” J. Membr. Sci. 363 (1–2): 1–28. https://doi.org/10.1016/j.memsci.2010.06.046.
Driessen, W., and T. Vereijken. 2003. “Recent developments in biological treatment of brewery effluent.” In Proc., 9th Brewing Convention, 165–171. Victoria Falls, Zambia: Institute and Guild of Brewing Africa Section.
Du, X., Y. Shi, V. Jegatheesan, and I. Ul Haq. 2020. “A review on the mechanism, impacts and control methods of membrane fouling in MBR system.” Membranes 10 (2): 24. https://doi.org/10.3390/membranes10020024.
DWA (Deutsche Vereinigung für Wasserwirtschaft). 2010. Merkblatt DWA-M 732: Abwasser aus Brauereien. Hennef, Germany: DWA.
DWA (Deutsche Vereinigung für Wasserwirtschaft). 2013. Merkblatt DWA-M 115-1: Indirekteinleitung nicht häuslichen Abwassers Teil 1: Rechtsgrundlagen. Hennef, Germany: DWA.
DWA (Deutsche Vereinigung für Wasserwirtschaft). 2016. Arbeitsblatt DWA-A-131: Bemessung von einstufigen Belebungsanlagen. Hennef, Germany: DWA.
El-Kamah, H., A. Tawfik, M. Mahmoud, and H. Abdel-Halim. 2010. “Treatment of high strength wastewater from fruit juice industry using integrated anaerobic/aerobic system.” Desalination 253 (1–3): 158–163. https://doi.org/10.1016/j.desal.2009.11.013.
Field, R. W., D. Wu, J. A. Howell, and B. B. Gupta. 1995. “Critical flux concept for microfiltration fouling.” J. Membr. Sci. 100 (3): 259–272. https://doi.org/10.1016/0376-7388(94)00265-Z.
Fillaudeau, L., P. Blanpain-Avet, and G. Daufin. 2006. “Water, wastewater and waste management in brewing industries.” J. Cleaner Prod. 14 (5): 463–471. https://doi.org/10.1016/j.jclepro.2005.01.002.
Geest, J., and C. Kiechle. 2009. “Effiziente Vorbehandlung: Biogasgewinnung aus Brauereiabwasser.” Brauindustrie 12: 16–19.
Glas, K. 2009. “Waste water.” Chap. 26 in Handbook of brewing: Processes, technology, markets, 621–641. Weinheim, Germany: Wiley.
Götz, G., S.-U. Geißen, A. Ahrens, and S. Reimann. 2014. “Adjustment of the wastewater matrix for optimization of membrane systems applied for water reuse in breweries.” J. Membr. Sci. 465 (Sep): 68–77. https://doi.org/10.1016/j.memsci.2014.04.014.
Gui, P., X. Huang, Y. Chen, and Y. Qian. 2003. “Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor.” Desalination 151 (2): 185–194. https://doi.org/10.1016/S0011-9164(02)00997-9.
Habib, R., M. B. Asif, S. Iftekhar, Z. Khan, K. Gurung, V. Srivastava, and M. Sillanpää. 2017. “Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment.” Chemosphere 181 (Aug): 19–25. https://doi.org/10.1016/j.chemosphere.2017.04.048.
Hong, S. P., T. H. Bae, T. M. Tak, S. Hong, and A. Randall. 2002. “Fouling control in activated sludge submerged hollow fiber membrane bioreactors.” Desalination 143 (3): 219–228. https://doi.org/10.1016/S0011-9164(02)00260-6.
Iorhemen, O. T., R. A. Hamza, and J. H. Tay. 2016. “Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling.” Membranes 6 (2): 33. https://doi.org/10.3390/membranes6020033.
Jørgensen, M. K., B. H. Hede, and M. L. Christensen. 2019. “Modeling approach to describe fouling removal during relaxation.” J. Taiwan Inst. Chem. Eng. 94 (Jan): 119–123. https://doi.org/10.1016/j.jtice.2018.01.052.
Krause, S., B. Zimmermann, U. Meyer-Blumenroth, W. Lamparter, B. Siembida, and P. Cornel. 2010. “Enhanced membrane bioreactor process without chemical cleaning.” Water Sci. Technol. 61 (10): 2575–2580. https://doi.org/10.2166/wst.2010.183.
Le-Clech, P., V. Chen, and T. A. G. Fane. 2006. “Fouling in membrane bioreactors used in wastewater treatment.” J. Membr. Sci. 284 (1–2): 17–53. https://doi.org/10.1016/j.memsci.2006.08.019.
Le-Clech, P., B. Jefferson, I. S. Chang, and S. J. Judd. 2003. “Critical flux determination by the flux-step method in a submerged membrane bioreactor.” J. Membr. Sci. 227 (1–2): 81–93. https://doi.org/10.1016/j.memsci.2003.07.021.
Lesjean, B., and E. H. Huisjes. 2008. “Survey of European MBR market, trends and perspectives.” Desalination 231 (1–3): 71–81. https://doi.org/10.1016/j.desal.2007.10.022.
Li, J., Y. Liu, X. Li, and F. Cheng. 2019. “Reactor performance and membrane fouling of a novel submerged aerobic granular sludge membrane bioreactor during long-term operation.” J. Water Reuse Desalin. 9 (1): 1–9. https://doi.org/10.2166/wrd.2017.019.
Lintzos, L., K. Chatzikonstantinou, N. Tzamtzis, and S. Malamis. 2018. “Influence of the backwash cleaning water temperature on the membrane performance in a pilot SMBR unit.” Water 10 (3): 238. https://doi.org/10.3390/w10030238.
Luo, Y., R. K. Henderson, and P. Le-Clech. 2019. “Characterisation of organic matter in membrane photobioreactors (MPBRs) and its impact on membrane performance.” Algal Res. 44 (Dec): 101682. https://doi.org/10.1016/j.algal.2019.101682.
Maqbool, T., S. J. Khan, and C.-H. Lee. 2014. “Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.” Bioresour. Technol. 172 (Nov): 391–395. https://doi.org/10.1016/j.biortech.2014.09.064.
Martí-Calatayud, M. C., S. Schneider, S. Yüce, and M. Wessling. 2018. “Interplay between physical cleaning, membrane pore size and fluid rheology during the evolution of fouling in membrane bioreactors.” Water Res. 147 (Dec): 393–402. https://doi.org/10.1016/j.watres.2018.10.017.
Meng, F., S. Zhang, Y. Oh, Z. Zhou, H.-S. Shin, and S.-R. Chae. 2017. “Fouling in membrane bioreactors: An updated review.” Water Res. 114 (May): 151–180. https://doi.org/10.1016/j.watres.2017.02.006.
Moazzem, S., H. Ravishankar, L. Fan, F. Roddick, and V. Jegatheesan. 2020. “Application of enhanced membrane bioreactor (eMBR) for the reuse of carwash water.” J. Environ. Manage. 254 (Jan): 109780. https://doi.org/10.1016/j.jenvman.2019.109780.
Navaratna, D., and V. Jegatheesan. 2011. “Implications of short and long term critical flux experiments for laboratory-scale MBR operations.” Bioresour. Technol. 102 (9): 5361–5369. https://doi.org/10.1016/j.biortech.2010.12.080.
Neves, M. F., V. G. Trombin, F. F. Lopes, R. Kalaki, and P. Milan. 2011. “World consumption of beverages.” In The orange juice business, 118. Wageningen, Netherlands: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-739-4_31.
Niwa, T., M. Hatamoto, T. Yamashita, H. Noguchi, O. Takase, K. A. Kekre, W. S. Ang, G. Tao, H. Seah, and T. Yamaguchi. 2016. “Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater.” Bioresour. Technol. 218 (Oct): 1–8. https://doi.org/10.1016/j.biortech.2016.06.036.
Palmarin, M. J., and S. Young. 2019. “The effects of biocarriers on the mixed liquor characteristics, extracellular polymeric substances, and fouling rates of a hybrid membrane bioreactor.” Biochem. Eng. J. 141 (Jan): 278–284. https://doi.org/10.1016/j.bej.2018.10.027.
Park, S., K.-M. Yeon, S. Moon, and J.-O. Kim. 2018. “Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit.” Chemosphere 191 (Jan): 573–579. https://doi.org/10.1016/j.chemosphere.2017.10.079.
Pinnekamp, J. 2006. Membrantechnik für die Abwasserreinigung. Aachen, Germany: FiW-Verlag.
Pollice, A., A. Brookes, B. Jefferson, and S. Judd. 2005. “Sub-critical flux fouling in membrane bioreactors-a review of recent literature.” Desalination 174 (3): 221–230. https://doi.org/10.1016/j.desal.2004.09.012.
Puspitasari, V., A. Granville, P. Le-Clech, and V. Chen. 2010. “Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane.” Sep. Purif. Technol. 72 (3): 301–308. https://doi.org/10.1016/j.seppur.2010.03.001.
Ravishankar, H., F. Roddick, D. Navaratna, and V. Jegatheesan. 2018. “Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system.” J. Environ. Manage. 213 (May): 168–179. https://doi.org/10.1016/j.jenvman.2018.02.063.
Simate, G. S. 2015. “The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ‘sandwiched’ in a granular filter bed.” J. Ind. Eng. Chem. 21 (Jan): 1277–1285. https://doi.org/10.1016/j.jiec.2014.06.001.
Simate, G. S., J. Cluett, S. E. Iyuke, E. T. Musapatika, S. Ndlovu, L. F. Walubita, and A. E. Alvarez. 2011. “The treatment of brewery wastewater for reuse: State of the art.” Desalination 273 (2–3): 235–247. https://doi.org/10.1016/j.desal.2011.02.035.
Tabraiz, S., S. Haydar, P. Sallis, S. Nasreen, Q. Mahmood, M. Awais, and K. Acharya. 2017. “Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.” Water Sci. Technol. 76 (4): 963–975. https://doi.org/10.2166/wst.2017.084.
Tang, S., J. Li, Z. Zhang, B. Ren, and X. Zhang. 2019. “Comparison of long-term ceramic membrane bioreactors without and with in-situ ozonation in wastewater treatment: Membrane fouling, effluent quality and microbial community.” Sci. Total Environ. 652 (Feb): 788–799. https://doi.org/10.1016/j.scitotenv.2018.10.284.
Thiemig, C. 2011. “Die Bedeutung der Filtrationseigenschaften von belebten Schlämmen beim Betrieb von Membranbioreaktoren.” Ph.D. dissertation, Institute for Urban Water Management, RWTH Aachen.
van der Marel, P., A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. Meer. 2009. “An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor.” J. Membr. Sci. 332 (1–2): 24–29. https://doi.org/10.1016/j.memsci.2009.01.046.
Vanysacker, L., R. Bernshtein, and I. F. J. Vankelecom. 2014. “Effect of chemical cleaning and membrane aging on membrane biofouling using model organisms with increasing complexity.” J. Membr. Sci. 457 (May): 19–28. https://doi.org/10.1016/j.memsci.2014.01.015.
Walter, S. 2005. “Untersuchung verfahrenstechnischer Möglichkeiten zur Brauchwasserkreislauffuehrung in der Brauerei.” Ph.D. dissertation, Chair of Chemical-Technical Analysis and Chemical Food Technology, Technical Univ. Munich.
Wang, H., Z. Liu, S. Luo, R. Khan, P. Dai, P. Liang, X. Zhang, K. Xiao, and X. Huang. 2020. “Membrane autopsy deciphering keystone microorganisms stubborn against online NaOCl cleaning in a full-scale MBR.” Water Res. 171 (Mar): 115390. https://doi.org/10.1016/j.watres.2019.115390.
Werkneh, A. A., H. D. Beyene, and A. A. Osunkunle. 2019. “Recent advances in brewery wastewater treatment; approaches for water reuse and energy recovery: A review.” Environ. Sustainability 2 (2–3): 199–209. https://doi.org/10.1007/s42398-019-00056-2.
Wisniewski, C., and A. Grasmick. 1998. “Floc size distribution in a membrane bioreactor and consequences for membrane fouling.” Colloids Surf., A 138 (2–3): 403–411. https://doi.org/10.1016/S0927-7757(96)03898-8.
Wu, J., P. Le-Clech, R. M. Stuetz, A. G. Fane, and V. Chen. 2008. “Effects of relaxation and backwashing conditions on fouling in membrane bioreactor.” J. Membr. Sci. 324 (1–2): 26–32. https://doi.org/10.1016/j.memsci.2008.06.057.
Wu, Z., Q. Wang, Z. Wang, Y. Ma, Q. Zhou, and D. Yang. 2010. “Membrane fouling properties under different filtration modes in a submerged membrane bioreactor.” Process Biochem. 45 (10): 1699–1706. https://doi.org/10.1016/j.procbio.2010.07.002.
Xiao, K., S. Liang, X. Wang, C. Chen, and X. Huang. 2019. “Current state and challenges of full-scale membrane bioreactor applications: A critical review.” Bioresour. Technol. 271 (Jan): 473–481. https://doi.org/10.1016/j.biortech.2018.09.061.
Zsirai, T., P. Buzatu, P. Aerts, and S. Judd. 2012. “Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor.” Water Res. 46 (14): 4499–4507. https://doi.org/10.1016/j.watres.2012.05.004.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 4April 2021

History

Received: Jun 22, 2020
Accepted: Nov 24, 2020
Published online: Jan 18, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Marcus Verhuelsdonk [email protected]
Engineer, Clariant Produkte (Deutschland) GmbH, Semmelweisstrasse 1, Planegg 82152, Germany; Chair of Food Chemistry and Molecular Sensory Science, Technical Univ. of Munich, Freising 85354, Germany (corresponding author). Email: [email protected]
Karl Glas, Ph.D. [email protected]
Senior Scientist, Chair of Food Chemistry and Molecular Sensory Science, Technical Univ. of Munich, Freising 85354, Germany. Email: [email protected]
Harun Parlar, Ph.D. [email protected]
Professor, Chair of Chemical-Technical Analysis and Chemical Food Technology, Technical Univ. of Munich, Freising 85354, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share